CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 451

_id ecaade2010_148
id ecaade2010_148
authors Joyce, Sam; Tabak, Vincent; Sharma, Shrikant; Williams, Chris
year 2010
title Applied Multi-Scale Design and Optimization for People Flow
doi https://doi.org/10.52842/conf.ecaade.2010.633
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.633-639
summary This paper presents an overview of the current developments in people flow analysis in Buro Happold’s analytical group SMART Solutions. The role of people flow analysis has become an established one, within many leading consultancy firms with their own specialist groups supporting the architects and planners in the design of buildings and urban spaces. This paper proposes that the key development in the progression of this work is a due to a change in emphasis, away from a passive analysis task where its key role is to validate assumptions of flow and alleviate areas of high concern to using the process as a design instigator/driver. The new paradigm emerging, involves calculating people flow at the conceptual stage of a project in collaboration with the respective architectural firm, and using this information as a primary design input. This paper describes and analyses the two objectives set out by Buro Happold’s SMART group in order to improve the process of design; firstly to make it more prominent in the design environment and secondly to see if it has the potential to work as a design driver. These objectives create a design methodology defined by people flow and suggest value in innovating and conceiving of robust simple methods of improving designs.
wos WOS:000340629400068
keywords People flow; Pedestrian flow; Multi-objective optimization; Masterplanning; Network analysis
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_158
id ecaade2010_158
authors Kuo, Jeannette; Zausinger, Dominik
year 2010
title Scale and Complexity: Multi-layered, multi-scalar agent networks in time-based urban design
doi https://doi.org/10.52842/conf.ecaade.2010.651
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.651-657
summary Urban design, perhaps even more than architecture, is a timedependent discipline. With its multi-layered complexities, from individual buildings to entire regions, decisions made at one level, that may not show effect immediately, may prove to have disastrous consequences further down the line. The need to incorporate time-based simulations in urban modeling, and the demand for a means of evaluating the changes have led to explorations with multi-agent systems in computation that allow for decisions to be decentralized. From the first basic rule-based system of Conway’s Game of Life [1] to recent urban simulations developed at institutions like the ETH Zurich [2], or UCL CASA [3], these programs synthesize the various exigencies into complex simulations so that the designer may make informed decisions. It is however not enough to simply use parametrics in urban design. Rules or desires implemented at one scale may not apply to another, while isolating each scalar layer for independent study reverts to the disjunctive and shortsighted practices of past planning decisions. Central to current parametric research in urban design is the need to deal with multiple scales of urbanism with specific intelligence that can then feed back into the collective system: a networked parametric environment. This paper will present the results from a city-generator, developed in Processing by Dino Rossi, Dominik Zausinger and Jeannette Kuo, using multiagent systems that operate interactively at various scales.
wos WOS:000340629400070
keywords Agent-based modeling; Cellular automata; Parametric urbanism; Neural network; Complexity; Genetic algorithm; Urban dynamics
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_067
id ecaade2010_067
authors Guzik, Agata
year 2010
title Digital Fabrication Inspired Design: Influence of fabrication parameters on a design process
doi https://doi.org/10.52842/conf.ecaade.2010.227
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.227-235
summary Considering the use of a particular digital fabrication method, this research intends to look into the design-production relation and attempts to answer the question of how the manufacturing parameters can be integrated into the design process to facilitate the design-to-production communication. It is argued that the above is achievable through the application of a simulationbased algorithmic procedures derived from the inherent logic of a fabrication machine’s functionality. It has been studied through creation of two custom tools facilitating the design process – a library for the Processing programming language and a bespoke design procedure - both based on a functionality of the CNC milling machine. Finally, the conclusion is made that broader implementation of custom design procedures with underlying digital fabrication logic has a potential of altering the design process and facilitate the design-tofactory communication.
wos WOS:000340629400024
keywords Digital fabrication; Design process; Optimization; Genetic algorithm; CNC milling
series eCAADe
email
last changed 2022/06/07 07:50

_id ascaad2010_189
id ascaad2010_189
authors Allahaim, Fahad; Anas Alfaris and David Leifer
year 2010
title Towards Changeability
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 189-200
summary Many buildings around the world have undergone successive changes over their life cycles. Regardless of the type or size of a building there are usually requirements for change due to several unanticipated forces and emerging uncertainties that act upon them. These changes might be in the building’s spatial, structural or service systems. This can be due to changes in the needs of occupants, the market demand or technological advances. Although buildings undergo change, current design practice does not address this and buildings are still designed as if they will remain static. This paper proposes an Adaptable Buildings Design (ABD) Framework to address the issue of adaptability in building design. Using this methodology uncertainties and future changes are first identified. To increase the building’s longevity, flexibility options are embedded and design rules are formulated to trigger these options when necessary. The value of adaptability is then assessed by implementing several simulations using Real Options Analysis (ROA). To demonstrate the approach, the ABD is applied to a multi-use commercial building case study. Flexibility is embedded in the building’s design across several systems allowing it to change and evolve over time based on a set of design rules. The buildings adaptability is then assessed using ROA. Positive results demonstrate the strength of the proposed methodology in addressing future change and uncertaintie.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_250
id acadia10_250
authors Foged, Isak Worre; Poulsen, Esben Skouboe
year 2010
title Environmental Feedback and Spatial Conditioning
doi https://doi.org/10.52842/conf.acadia.2010.250
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 250-257
summary This paper illustrates responsive systems, which focus on the implementation of multi-objective adaptive design prototypes from sensored environments. The intention of the work is to investigate multi-objective criteria both as a material system and as a processing system by creating prototypes with structural integrity, where the thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparency altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening, and application.
keywords Environmental Feedback, Hierarchical Systems, Information Processing, Homeostat
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
doi https://doi.org/10.52842/conf.acadia.2010.379
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac20108204
id ijac20108204
authors Jacobus, Frank; Jay McCormack, Josh Hartung
year 2010
title The Chair Back Experiment: Hierarchical Temporal Memory and the Evolution of Artificial Intelligence in Architecture
source International Journal of Architectural Computing vol. 8 - no. 2, 151-164
summary Computational synthesis tools that automatically generate solutions to design problems are not widely used in architectural practice despite many years of research. This deficiency can be attributed, in part, to the difficulty of constructing robust building specific databases. New advances in artificial intelligence such as Hierarchical Temporal Memory (HTM) have the potential to make the construction of these databases more realistic in the near future. Based on an emerging theory of human neurological function, HTMs excel at ambiguous pattern recognition. This paper includes a first experiment using HTMs for learning and recognizing patterns in the form of visual style characteristics in three distinct chair back types. Results from the experiment indicate that HTMs develop a similar storage of quality to humans and are therefore a promising option for capturing multi-modal information in future design automation efforts.
series journal
last changed 2019/05/24 09:55

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_43
id sigradi2010_43
authors Clayton, Mark J.; Ozener Ozan; Haliburton James; Farias Francisco
year 2010
title Towards Studio 21: Experiments in Design Education Using BIM
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 43-46
summary Explorations conducted in university - based design studios suggest that Building Information Modeling (BIM) technology invites the adoption of a dramatically different design process. In contrast to conventional process rooted in successive refinement of initial abstractions and dependence on tacit knowledge, the Studio 21 BIM - aided process relies upon a complete and comprehensive base case and subsequent alternative schemes that are subjected to explicit analysis to support choice of the final design. The Studio 21 process can boost the objective level of performance that is achieved. It is teachable and may be a better process for addressing 21st century imperatives.
keywords design, process, education, BIM, studio
series SIGRADI
email
last changed 2016/03/10 09:49

_id caadria2010_044
id caadria2010_044
authors Tsai, Tai-Ling; Tay-Sheng Jeng and Jian-Hsu Chen
year 2010
title Spiritual ambiance in interactive temple
doi https://doi.org/10.52842/conf.caadria.2010.467
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 467-476
summary This paper introduces a new dimension of spiritual ambiance design using a real-world interactive temple design project. The research focus has shifted from users’ basic demands for physical design artifacts to the spiritual demands through embodied interaction. Thus, this study aims at enhancing the spiritual reflection in temple design through ambient media in interactive space. The objective of designing spiritual ambiance in temple is to develop a medium for taking the believers into religious contemplation and enhancing understanding of spirit of Bodhisattva Guan Yin. This research develops the design process of interactive space design with spiritual ambiance. Through the three design levels of emotional design principles, the design conceptual model of spiritual ambiance triggers resonances through metaphor association. To verify the conceptual model, the design concept is implemented in the physical space via human-centered embodied interaction. The on-site project not only introduces advanced sensing technology embedded into the temple but also verifies the applicability of human–computer interaction to a new dimension of spiritual ambiance design
keywords Human–computer interaction; ubiquitous computing; interactive space; spiritual ambiance
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2010_069
id ecaade2010_069
authors Schoch, Martin; Praditsmanont, Apichat
year 2010
title Experimenting with Building Footprint Formation and Volume Optimization: A constraint programming approach for the optimization of buildingvolumes based on combinatorial rectangular footprint formations
doi https://doi.org/10.52842/conf.ecaade.2010.419
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.419-427
summary This paper is focusing on integrating footprint formations of buildingvolumes into an existing research of building-volume optimization (BVO). While earlier BVO experiments concentrated on single rectangular floor-area units per floor, the current BVO model allows footprint assemblies of combinatorial rectangular floor-area units per floor. The aspect of using these combinatorial floor assemblies is to provide more flexibility into the shaping of possible building-volumes and thus a more realistic approach to building-volume design. The investigation regarding combinatorial floor-area units concentrated on running time in reference to amount of allowable unit combinations per floor and the ability to provide close to optimal solutions through additional search runs. Results of the experiments documented a sharp increase of running time due to the additional allocation of floor-area units, while the BVO model was improved through the ability to generate combinatory footprint formation and offer close to optimal solutions.
wos WOS:000340629400045
keywords Decision support; Design optimization; Building-volume design; Life cycle costs; Constraint-based design
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_117
id ascaad2010_117
authors El Gewely, Maha H.
year 2010
title Algorithm Aided Architectural Design (Aaad)
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 117-126
summary Algorithm Aided Architectural Design (AAAD) is considered a second paradigm shift in the Architectural design process after the first one of bridging the conventional design process to the digital realm of design. This paper is divided into two parts, the first part comprehends the Algorithmic Architecture approach of from the point of view of tools, techniques, theories and practice in order to find the Algotecture theories on the map of Digital Architecture. Then, the paper exemplifies an application on Algorithmic Architecture. FALLINGWATER TOOLBOX VERSION 1.0 is a computational design demo tool for architects to aid in the house schematic design phase according to an analytical study of Frank Lloyd Wright's basic design rules and spatial program of his masterpiece; FallingWater House, (Edgar J. Kaufmann family house 1939). These rules have been transferred to algorithms and code thereafter. At a preceding stage, the Graphical User Interface (GUI) was developed using MAXScript 9.0. Using the FALLINGWATER TOOLBOX, infinite number of house prototypes can be generated within few minutes. Although, the FWT is based on a hypothetical design problem of producing prototype alternatives for a new house with the same identity of the Edgar Kaufmann House, the concept of the tool can be applied on a wider range of problems. It may help generating prototype alternative solutions for residential compounds design according to the required constraints.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_056
id ecaade2010_056
authors Oezener, Ozan Oender; Farias, Francisco; Haliburton, James; Clayton, Mark J.
year 2010
title Illuminating the Design: Incorporation of natural lighting analyses in the design studio using BIM
doi https://doi.org/10.52842/conf.ecaade.2010.493
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.493-498
summary The growing demand for sustainable architectural design motivates the integration of BIM technologies and novel design processes into architectural education. This paper presents the results from a set of educational case studies for the incorporation of BIM-based daylighting simulations and analyses into the design studio. With a carefully devised studio setting and the participation of interdisciplinary consultants, the experimental case studies simulated an integrated design process based on rapid information exchange and collaborative decision making. The implemented method enables students to use BIM models and daylighting simulations as significant sources of design information for performance-based architectural design.
wos WOS:000340629400053
keywords BIM; daylighting simulations; Collaborative design; Integration
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id acadia10_196
id acadia10_196
authors Tenu, Vlad
year 2010
title Minimal Surfaces as Self-organizing Systems
doi https://doi.org/10.52842/conf.acadia.2010.196
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 196-202
summary Minimal surfaces have been gradually translated from mathematics to architectural design research due to their fascinating geometric and spatial properties. Tensile structures are just an example of their application in architecture known since the early 1960s. The present research relates to the problem of generating minimal surface geometries computationally using self-organizing particle spring systems and optimizing them for digital fabrication. The algorithm is iterative and it has a different approach than a standard computational method, such as dynamic relaxation, because it does not start with a pre-defined topology and it consists of simultaneous processes that control the geometry’s tessellation. The method is tested on triply periodic minimal surfaces and focused on several fabrication techniques such as a tensegrity modular system composed of interlocked rings (Figure 1).
keywords Minimal Surfaces
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
doi https://doi.org/10.52842/conf.caadria.2021.1.241
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2010_048
id caadria2010_048
authors Gu, Ning; Vishal Singh and Xiangyu Wang
year 2010
title Applying augmented reality for data interaction and collaboration in BIM
doi https://doi.org/10.52842/conf.caadria.2010.511
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 511-520
summary Building Information Modelling (BIM) is expected to enable efficient collaboration, improved data integrity, distributed and flexible data sharing, intelligent documentation, and high-quality outcome, through enhanced performance analysis, and expedited multi-disciplinary planning and coordination. Despite these apparent benefits, the collaboration across the architecture, engineering and construction (AEC) disciplines is largely based on the exchange of 2D drawings. This paper reports the findings from a research project that aims at developing measures to enhance BIM-based collaboration in the AEC industry. Based on focus group interviews with industry participants and case studies of BIM applications, visualisation was identified as an interactive platform across the design and non-design disciplines. It is argued that visualisation can enhance the motivation for BIM-based collaboration through integration of advanced visualisation techniques such as virtual reality (VR) and augmented reality (AR). An AR interface for a BIM server is also presented and discussed in the paper. AR can open up potential opportunities for exploring alternatives to data representation, organisation and interaction, supporting seamless collaboration in BIM.
keywords BIM; augmented reality; design collaboration
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_250802 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002