CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 444

_id sigradi2010_415
id sigradi2010_415
authors Jennings, Pamela L.; Castro Martínez David Antonio
year 2010
title CONSTRUCT;VizM: A Framework for Rendering Tangible constructions
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 415-418
summary The CONSTRUCTS Toolkit is a wireless sensor network system (WSN) for mixed - reality applications. Wireless sensor networks have become an accessible development platform with advances in the convergence of micro electro - mechanical systems technology, wireless communication protocols, integrated circuit technologies, and pervasive and embedded systems. As applied applications for wireless sensor networks in the manufacturing and health industries continue to grow there remains an opportunity to integrate these technologies into gaming and learning applications. This paper will present an overview of the CONSTRUCT/VisM application designed for transforming construction state messages from the WSN CONSTRUCTS Toolkit into a real - time 3D virtual environment.
keywords mixed reality, tangibles, wireless sensor networks, graph systems
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2010_158
id ecaade2010_158
authors Kuo, Jeannette; Zausinger, Dominik
year 2010
title Scale and Complexity: Multi-layered, multi-scalar agent networks in time-based urban design
doi https://doi.org/10.52842/conf.ecaade.2010.651
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.651-657
summary Urban design, perhaps even more than architecture, is a timedependent discipline. With its multi-layered complexities, from individual buildings to entire regions, decisions made at one level, that may not show effect immediately, may prove to have disastrous consequences further down the line. The need to incorporate time-based simulations in urban modeling, and the demand for a means of evaluating the changes have led to explorations with multi-agent systems in computation that allow for decisions to be decentralized. From the first basic rule-based system of Conway’s Game of Life [1] to recent urban simulations developed at institutions like the ETH Zurich [2], or UCL CASA [3], these programs synthesize the various exigencies into complex simulations so that the designer may make informed decisions. It is however not enough to simply use parametrics in urban design. Rules or desires implemented at one scale may not apply to another, while isolating each scalar layer for independent study reverts to the disjunctive and shortsighted practices of past planning decisions. Central to current parametric research in urban design is the need to deal with multiple scales of urbanism with specific intelligence that can then feed back into the collective system: a networked parametric environment. This paper will present the results from a city-generator, developed in Processing by Dino Rossi, Dominik Zausinger and Jeannette Kuo, using multiagent systems that operate interactively at various scales.
wos WOS:000340629400070
keywords Agent-based modeling; Cellular automata; Parametric urbanism; Neural network; Complexity; Genetic algorithm; Urban dynamics
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_149
id ecaade2010_149
authors Salim, Flora Dilys; Burry, Jane; Taniar, David; Lee, Vincent Cheong; Burrow, Andrew
year 2010
title The Digital Emerging and Converging Bits of Urbanism: Crowddesigning a live knowledge network for sustainable urban living
doi https://doi.org/10.52842/conf.ecaade.2010.883
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.883-891
summary Data is ubiquitous in our cities. However, designing a knowledge network about our cities is an arduous task, given that data sensed cannot be used directly, human significance must be added. Adding human significance can be achieved via an automated “expert system (ES)” in which domain expert knowledge are stored in a knowledge-based repository. The domain expert knowledge is matched with the corresponding data to derive specific inference which can aid decision making for urban stakeholders.This requires amalgamation of various interdisciplinary techniques. This paper presents a survey of existing technologies in order to investigate the emerging issues surrounding the design of a live knowledge network for sustainable urban living. The maps and models of the existing infrastructure of our cities that include a wealth of information such as topography, layout, zoning, land use, transportation networks, public facilities, and resource network grids need to be integrated with real-time spatiotemporal information about the city. Public data in forms of archives and data streams as well as online data from the social network and the Web can be analyzed using data mining techniques. The domain experts need to interpret the results of data mining into knowledge that will augment the existing knowledge base and models of our cities. In addition to the analysis of archived and streamed data sources from the built environment, the emerging state-of-the-art Web 2.0 and mobile technologies are presented as the potential techniques to crowddesign a live urban knowledge network. Data modeling, data mining, crowdsourcing, and social intervention techniques are reviewed in this paper with examples from the related work and our own experiments.
wos WOS:000340629400094
keywords Crowdsourcing; Knowledge discovery; Mobile and ubiquitous computing; Urban modeling; Spatial interaction; Social networking; Web 2.0
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_227
id acadia10_227
authors Salim, Flora Dilys; Mulder, Hugo; Jaworski, Przemyslaw
year 2010
title Demonstration of an Open Platform for Tangible and Social Interactions with Responsive Models
doi https://doi.org/10.52842/conf.acadia.2010.227
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 227-233
summary Information is ubiquitous due to the digitization of our world. There is an unprecedented volume of information in our physical and socially networked world that can be used to inform our design problems and the way we design. To date, designers of parametric models have been using design precedents, archived data, and simulated datasets to inform their modeling process, but live information sources from the environment are rarely considered as direct input to models. The paper discusses novel experiments in which digital parametric design models are extended with live input and parameters from physical environments and online social networks. The paper also presents UbiMash, an open source software platform that was introduced and refined during the dev elopment of these experiments.
keywords parametric design, responsive architecture, open source, design collaboration
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2010_021
id caadria2010_021
authors Schnabel, Marc Aurel and Evelyn L. C. Howe
year 2010
title The interprofessional virtual design studio
doi https://doi.org/10.52842/conf.caadria.2010.219
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 219-228
summary With the advent of Web 2.0 technologies, the Virtual Design Studio (VDS) has been revived in many schools of architecture around the globe. The recently evolving online Social Networks (SN) Platforms, as instruments for learning, have provided a potentially fruitful operative base for VDS. Yet these platforms have not enabled the VDS to explore new frontiers. All participants come from the same professional field and learn elements directly related to their existing design curriculum. The development of the VDS for interprofessional learning moves design education beyond conventional boundaries. The Interprofessional VDS (IPVDS) is an innovative method of teaching students from two different professional faculties the skills required for successful consultancy and promotional communication in the public realm. The IPVDS enabled students to develop consultancy skills and evidence-based communication strategies appropriate for disparate target audiences. It employed a digital SN learning platform to engage remotely-located students in acquiring new skills, transferring knowledge and achieving learning outcomes that enrich their professional experience. The paper presents details of the IPVDS, its methodology, outcomes, and evaluation of the studio, and discusses how the IPVDS is effective in enabling architectural students to understand and use communication and consultancy skills for collaboration across professional disciplines for the purpose of community engagement.
keywords Virtual Design Studio; interprofessional; collaboration; consultancy; design skills
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2010_165
id ecaade2010_165
authors Wassermann, Klaus
year 2010
title SOMcity: Networks, Probability, the City, and its Context
doi https://doi.org/10.52842/conf.ecaade.2010.197
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.197-205
summary Cities have always been locations of densified collections of various kinds of networks. While usually networks are conceived as a kind of immaterial logistic devices, we emphasize another quality of networks, their capabilities for associative learning. We propose autonomous associative networks in their probabilistic flavor, such as so-called Self-Organizing Maps, as abstract candidate structures for simulation experiments and as actualized structures of real cities as well. The properties of Self-Organizing Maps allow to introduce a whole new area of analytical procedures to conceive of the city and its properties. It also makes it possible to operationalize the attractivity of cities or the success of the implementation of urban planning.
wos WOS:000340629400021
keywords Urban theory; Participation; Self-organizing maps (SOM); Associativity; Network-based metric
series eCAADe
email
last changed 2022/06/07 07:58

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_234
id acadia10_234
authors de Monchaux, Nicholas; Patwa, Shivang; Golder, Benjamin; Jensen, Sara; Lung, David
year 2010
title Local Code: The Critical Use of Geographic Information Systems in Parametric Urban Design
doi https://doi.org/10.52842/conf.acadia.2010.234
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 234-242
summary Local Code uses geospatial analysis to identify thousands of publicly owned abandoned sites in major US cities, imagining this distributed, vacant landscape as a new urban system. Deploying GIS analysis in conjunction with parametric design software, a landscape proposal for each site is tailored to local conditions, optimizing thermal and hydrological performance to enhance local performance and enhance the whole city’s ecology. Relieving burdens on existing infrastructure, such a digitally mediated, dispersed system provides important opportunities for urban resilience and transformation. In a case study of San Francisco, the projects’ quantifiable effects on energy usage and stormwater remediation would eradicate 88-96% of the need for more expensive, centralized, sewer, and electrical upgrades. As a final, essential layer, the project proposes digital citizen participation to conceive a new, more public infrastructure as well.
keywords GIS, Parametric Design, Emergence, Morphogenesis, Network, Urban Design, Parametric Urbanism
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
doi https://doi.org/10.52842/conf.acadia.2010.379
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2010_001
id caadria2010_001
authors Hsu, Tse-Wie; Shang-Chia Chiou and Jen Yen
year 2010
title Vine grammar generative system
doi https://doi.org/10.52842/conf.caadria.2010.009
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 9-18
summary Graphic designers always take both time and efforts when they are creating a decorative pattern with complicated curves and a great deal of motifs. Although there are many sourcebooks of decorative patterns, the satisfaction of the results couldn’t accomplish with designer’s requirements. Thus, graphic designers need a faster and easier system to create decorative patterns in classical style. There are a few effiencient methods to analysis curves and surfaces in the development of shape grammars. The purpose of this research is to develop Vine Grammar based on shape grammars. The vine grammar analyses principles hidden in the language of deisgn works to create the order, then generates design by using Bézier curves. This research also presents the development of a decorative pattern generative system called Shlishi by using FLASH Action Script 2.0. The grammar can be applied with computers and to verify rules quickly by Shlishi. The intention of this research is to make graphic designers to use these rules to create decorative patterns of plants in classic style and to produce satisfactory results for designer more efficiently or to make the results the source materials for the follow-up design works.
keywords Vine; Shlishi; decorative patterns; shape grammar; generative design system
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2010_148
id ecaade2010_148
authors Joyce, Sam; Tabak, Vincent; Sharma, Shrikant; Williams, Chris
year 2010
title Applied Multi-Scale Design and Optimization for People Flow
doi https://doi.org/10.52842/conf.ecaade.2010.633
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.633-639
summary This paper presents an overview of the current developments in people flow analysis in Buro Happold’s analytical group SMART Solutions. The role of people flow analysis has become an established one, within many leading consultancy firms with their own specialist groups supporting the architects and planners in the design of buildings and urban spaces. This paper proposes that the key development in the progression of this work is a due to a change in emphasis, away from a passive analysis task where its key role is to validate assumptions of flow and alleviate areas of high concern to using the process as a design instigator/driver. The new paradigm emerging, involves calculating people flow at the conceptual stage of a project in collaboration with the respective architectural firm, and using this information as a primary design input. This paper describes and analyses the two objectives set out by Buro Happold’s SMART group in order to improve the process of design; firstly to make it more prominent in the design environment and secondly to see if it has the potential to work as a design driver. These objectives create a design methodology defined by people flow and suggest value in innovating and conceiving of robust simple methods of improving designs.
wos WOS:000340629400068
keywords People flow; Pedestrian flow; Multi-objective optimization; Masterplanning; Network analysis
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_139
id acadia10_139
authors Miller, Nathan
year 2010
title [make]SHIFT: Information Exchange and Collaborative Design Workflows
doi https://doi.org/10.52842/conf.acadia.2010.139
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 139-144
summary This paper explores design processes requiring the invention and implementation of customized workflows for the optimization of design information exchange. Standard workflows in design software are typically dependent upon the use of proprietary file formats to communicate design intent across the design team. Software platforms promote “one-stop-shop” proprietary approaches to BIM where all team members and consultants ideally operate within a single model environment and store information within a single file format. While the ‘single model’ approach can be effective under some circumstances, this approach is often found to be limiting when the design process calls for the integration of other design toolsets and delivery processes. This is especially true for large complex projects where multiple participants with different software requirements need to collaborate on the same design. In these cases, various non-standard ways of working are often implemented, resulting in a new means of communicating design and building information across a team. This paper will outline the impact customized workflows have on the design process at NBBJ and evaluate their potential for leading to more innovative design and integrated teams. The first study will explore and evaluate the communication and collaborative process that took place in the design development and construction documentation stages of the Hangzhou Stadium. The second study will be an overview of ongoing investigation and experimentation into customized workflows for team and data integration.
keywords team integration, international practice, parametric methods
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_040
id caadria2010_040
authors Neisch, P.
year 2010
title Thai children’s participation in development of 3D virtual village
doi https://doi.org/10.52842/conf.caadria.2010.423
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 423-431
summary This paper present the process of virtual world’s adaptation to the vision of the real environment designed by the children of two primary Thai schools – a state school and a private school. The main point of the present paper is presentation of empirical research that is an analysis of four exercises – inquiries in which I asked children to draw the elements of their city and social life. The first task was to represent a route from home to school. Next, children were asked to draw the plan of their school, on which they had to differentiate the places dedicated to them, the common spaces and the spaces for another people. The last exercise done at school was related to the description of their family and their closest friends. At the end, the children were asked to draw an inside of their houses with the maximum of details. The results of representations of the daily life environments analysed and synthesised were rebuilt with the graphic computer tools. They will serve as the base of the conception of a 3D virtual village dedicated to the Thai children.
keywords Virtual / real; children; inquiry; drawing; pedagogic platform
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
doi https://doi.org/10.52842/conf.acadia.2020.1.668
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2010_39
id sigradi2010_39
authors Piazentin, Ono Jorge Henrique; Corbucci Caldeira Marco Antonio
year 2010
title Graphical Simulator for a Robotic Environment
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 39-42
summary In this paper we present a didactic tool named “STORM”, which simulates a real environment in which students can control and program a robot in a very basic way by simply setting switches to configure an action or an activity to be carried out by the robot. The control interface is totally graphic, so it can be used by students from primary schools to universities. The objective of the simulator is to create learning objects to develop the dynamic and strategic competences of students in addition to concepts such as robot navigation and control, and computer programming.
keywords robotics, simulation, robotic education
series SIGRADI
email
last changed 2016/03/10 09:57

_id ecaade2010_110
id ecaade2010_110
authors Santo, Yasu; Frazer, John Hamilton; Drogemuller, Robin
year 2010
title Co-Adaptive Environments: Investigation into computer and network enhanced adaptable, sustainable and participatory environments
doi https://doi.org/10.52842/conf.ecaade.2010.677
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.677-686
summary This paper presents research in response to environmental concerns we face today. In a search for a better method to manage spaces and building resources consumed excessively through traditional top-down architectural solutions, the research began by speculating that the building spaces and resources can be managed by designing architectural systems that encourage a bottom-up approach. In other words, this research investigates how to design systems that encourage occupants and users of buildings to actively understand, manage and customise their own spaces. Specific attention is paid to the participation of building users because no matter how sophisticated the system is, the building will become as wasteful as conventional buildings if users cannot, or do not want to, utilise the system effectively. The research is still in its early stages. The intension of this paper is to provide a background to the issue, discuss researches and projects relevant to, but not necessarily about, architecture, and introduce a number of hypothesis and investigations to realise adaptable, participatory and sustainable environments for users.
wos WOS:000340629400073
keywords Adaptive; Interactive; Participatory; Tangible; Ubiquitous
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_625681 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002