CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 437

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
doi https://doi.org/10.52842/conf.caadria.2010.283
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2010_127
id ascaad2010_127
authors Hubers, Hans
year 2010
title Collaborative Parametric BIM
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 127-134
summary The paper will be focussing on a number of digital design tools used in [our groups credentials]. A new laboratory called […] is developed with Virtual Reality for collaborative architectural design. A brief description of the systems and how they are used to support a design team is given. Synchronic and a-synchronic, local and inter-local communication is made possible. Methods for introducing sustainability in the digital design process and user participation over the Internet will be discussed. The results of the author’s PhD research “Collaborative architectural design in virtual reality” are used to develop a new approach in which team members use their own specific software. Swarm design applications developed in Virtools are used at the start of a project. The objects in the swarm can be urban and architectural functional volumes. Examples of the first are houses, offices, factories, roads and water ways. Examples of the second are working, dining, shopping and waiting spaces. Relations between the functional volumes with or without constraints make the functional volumes swarm to find equilibrium. Everything is dynamic, meaning that relations and functional volumes can change any time. Alternatives can be developed using different values for these parameters and by top-down intervention. When the final global layout has been chosen, using a criteria matrix with sustainability criteria to be judged by all participants, including the future users, a next phase is started amongst professionals using parametric design software. A study into different types of parametric design software makes clear why object parametric software can be used for IFC based BIM, while the more interesting process parametric software can not. To make this clear a pragmatic description of the IFC format is given with a simple example of such a file. Future research will be proposed in which applications of different disciplines are connected through the application programming interfaces, while integrating as much as possible the building information and knowledge in the IFC format.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:48

_id ascaad2010_179
id ascaad2010_179
authors Jones, Charles; Kevin Sweet
year 2010
title Over Constrained
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 179-188
summary Parametric software has fundamentally changed the way in which architecture is conceptualized, developed and even constructed. The ability to assign parameters or numeric variables to specific portions of a project has allowed designers the potential to test variations of their design. Small changes to a single parameter can have an exponential effect on the designed object and alter its appearance beyond original preconceptions in both positive and negative ways. Parametric software also has the ability to constrain or restrict geometry to set values, parameters or conditions. This has the benefit of allowing portions of a form to remain constant or unchanged while simultaneously allowing for a great degree of flexibility in response to a design intent. Constraining portions of a design allows architects to respond to existing or unalterable conditions by ""locking down"" information within a project and then explore those portions that can change more freely. This programmed relationship between the parameter and the form, once established, can give the illusion of minimal effort for maximum output. The ease in which geometrical form can be altered and shaped by a single variable can mislead beginning designers into thinking that the software makes these relationships for them. What is hidden, is the programming or connections needed between the parameters and the geometry in order to produce such dramatic change. Finally, thinking parametrically about design reintroduces the concept of a rigorous, intent driven, fabrication oriented practice; a practice lost in a digital era where the novelty of new tools was sufficient to produce new form. Because parametric models must have established relationships to all parts of the design, each component must have a purpose, be well thought out, and have a direct relationship to a real world object. The introduction of parametric design methodologies into an architectural pedagogy reestablishes architectural praxis in an academic setting. Students are taught to design based on creating relationships to connected components; just as they would do in a professional architectural practice. This paper outlines how Digital Project – a parametric based software – was introduced into an academic setting in an attempt reconnect the ideologies of academia with the practicalities of professional practice. In order to take full advantage of Digital Project as a parameter based software, a project that creates modular, flexible geometries was devised. Produced over one semester, the project set out to find ways of controlling designed geometry through variable parameters that allowed the initial module to be instantiated or replicated into a wall condition: maintaining a unified whole of discrete components. This paper outlines this process, the results and how the outcomes demonstrates the parametric ideologies described above.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_133
id acadia10_133
authors Kim, Jong Bum, Clayton, Mark J.
year 2010
title Support Form-based Codes with Building Information Modeling – The Parametric Urban Model Case Study
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 133-138
doi https://doi.org/10.52842/conf.acadia.2010.133
summary This study aims to develop the parametric urban model to support Form-based Codes (FBCs) by using Object-Oriented Parametric Modeling (OOPM) and Building Information Modeling (BIM). FBCs have been used to substitute conventional land-use and zoning regulations in the United States. In many cities, FBCs were implemented successfully, but excessive design constraints, difficult code making process, and missing density of FBCs are criticized. As a response to the increasing needs of parametric modeling approaches in the urban design domain, we applied BIM and OOPM techniques in two case studies. We conclude that BIM and OOPM have a great potential to support planning and design processes, and that the parametric urban model allows FBCs to be more flexible, interpretable, and interoperable.
keywords Form-based Codes, Building Information Modeling, Object-Oriented Parametric Modeling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2012_235
id sigradi2012_235
authors Polo, Pablo Herrera
year 2012
title Reutilizando códigos como mecanismo de información y conocimiento: Programación en arquitectura [Reusing codes as a mechanism of information and cognition: Scripting in architecture]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 74-78
summary Differently from other regions in the Planet, since 2010, in Latin America textual programming language (Rhinoscripting) is being replaced by its visual equivalent (Grasshopper). This is a consequence of our preference for an interactive platform, and because our design problems are not as complex, so we aim to control geometrical problems or aspects belonging to an product scale instead of an architectural one. Problems emerging when creating code could be improved by modifying and reusing existing solutions as a starting point, since learning would not be centered in the object but in the process of creating it, using a suitable instrument.
keywords Visual Programming Language; Textual Programming Language; Scripting; Grasshopper; Rhinoscripting
series SIGRADI
email
last changed 2016/03/10 09:57

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20108105
id ijac20108105
authors Grobman, Yasha Jacob; Abraham Yezioro; Isaac Guedi Capeluto
year 2010
title Non-Linear Architectural Design Process
source International Journal of Architectural Computing vol. 8 - no. 1, 41-54
summary The introduction of the computer to the architectural design process have facilitated the possibility to examine a large number of design alternatives by allowing continuous variation between pre defined constraints. However, for the most part, evaluation and comparison of the alternatives is still handled manually in a linear fashion by the designer. This paper introduces a different approach to the architectural design process, which calls for a multithreaded or a non-linear design process. In a non-linear design process design directions and alternatives are generated, presented and evaluated simultaneously, and in real time. As an example for a non-linear design process the Generative Performance Oriented Design model and software tool (GenPOD) are presented and discussed. Moving towards non-linear modes of design arguably increases design creativity by allowing generating and evaluating a greater number and variation of design alternatives.
series journal
last changed 2019/05/24 09:55

_id caadria2011_007
id caadria2011_007
authors Ko, Kaon and Salvator-John Liotta
year 2011
title Digital tea house: Japanese tea ceremony as a pretext for exploring parametric design and digital fabrication in architectural education
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 71-80
doi https://doi.org/10.52842/conf.caadria.2011.071
summary This paper reviews the Digital Tea House, a joint workshop in August of 2010 held at the University of Tokyo, Department of Architecture, together with Columbia University GSAPP. Three pavilions for hosting ceremony were designed and built in less than one month, in an attempt to bridge technology and culture not only through design but also fabrication. Issues addressed in the process included applications of computational design, interpretations of tradition and culture in spatial or activity oriented expressions, structural stability, to practical solutions for quick physical materialization. Three teams comprised of 6 to 8 students, each a blend of different nationalities, ultimately produced 3 full-scale tea houses with the same software, primary material, budget, and principal fabrication method.
keywords Digital fabrication; academic workshop; computational design; design-build; tea house
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2010_140
id ecaade2010_140
authors Chronis, Angelos; Liapi, Katherine A.
year 2010
title Parametric Approach to the Bioclimatic Design of a Student Housing Building in Patras, Greece
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.313-319
doi https://doi.org/10.52842/conf.ecaade.2010.313
wos WOS:000340629400033
summary A new housing complex on the Campus of the University of Patras, Greece, is expected to serve as a test-bed for experimentation with a parametric design process that integrates significant climatic data. To optimize the environmental performance of the proposed housing complex a parametric design algorithm has been developed. The algorithm links the weather data in the area with the site topography and the basic geometric features of the buildings on the site. To explore the interaction of the building features with the prevailing winds in the area and the solar exposure throughout the year various software applications, including computational fluid dynamics (CFD) simulations, have been utilized. The inclusion of wind data in the algorithm renders it particularly effective. The developed parametric process has been useful during the early design phase when studies on various patterns for arranging the buildings on the site were conducted. The parametric process has facilitated the configuration of the typical building block as well.
keywords Bioclimatic design; Parametric design; Design algorithms; Sun control; Wind analysis; CFD in building design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2010_049
id caadria2010_049
authors Fukuda, Tomohiro and Hitoshi Takeuchi
year 2010
title Development of use flow of 3D CAD / VR software for citizens who are non-specialists in city design
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 521-530
doi https://doi.org/10.52842/conf.caadria.2010.521
summary The purpose of this study is the development of a tool by which citizens who are non-specialists can design a regional revitalisation project. Therefore, a 3D CAD / VR (3-dimensional computer-aided design / virtual reality) combination system was developed by using SketchUP Pro, GIMP, and UC-win / Road. This system has the advantages of low cost and easy operation. The utility of the system was verified as a result of applying the developed prototype system in the Super Science High School program for high school students created by the Ministry of Education, Culture, Sports, Science and Technology, Japan. It has been used for two years, since 2007. In addition, the characteristics of the VR made by the non-specialists were considered.
keywords Urban renewal design; participatory planning; 3D CAD; VR; design by non-specialists
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2010_249
id ascaad2010_249
authors Hawker, Ronald; Dina Elkady and Thomas Tucker.
year 2010
title Not Just Another Pretty Face
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 249-260
summary Digital Heritage has gained popularity recently as means of dynamically representing and reconstructing historic buildings and cityscapes. Simultaneously this new medium of visualization affords another approach to examine human-virtual environment interaction and offers possibilities of exploiting virtual environments as educational tools. At Zayed University, a federal university primarily for women citizens of the United Arab Emirates, we have integrated student-faculty research and documented and reconstructed a number of historical buildings within the curriculum of the Department of Art and Design. We have further collaborated with the animation program at Winston Salem State University in North Carolina, utilizing the motion capture laboratory at the Center of Design Innovation to literally breathe life into these reconstructions. The primary idea is to contribute to the ongoing documentation of the country’s heritage through creating “responsive virtual heritage environments” where the spectator is actively engaged in exploring the digital space and gain certain degrees of control over the course and scheme of the dynamic experience. The process begins by introducing students to utilize the diverse capabilities of CAD and three dimensional computer applications and intertwine the technical skills they acquire to construct virtual computer models of indigenous built environments. The workflow between the different applications is crucial to stimulate students’ problem solving abilities and tame the application tools, specifically when constructing complex objects and structural details. In addition the spatial and temporal specificity different computer applications afford has proven useful in highlighting and analyzing the buildings’ function within the extreme climate of the country and their role in the political-economy, particularly in visualizing the ephemeral qualities of the architecture as they relate to passive cooling and the inter-relationships between built and natural environments. Light and time settings clarify shadow casting and explain the placement and orientation of buildings. Particle simulations demonstrate the harnessing of wind and rain both urban and rural settings. The quantitative data accumulated and charted through CAD and VR programs and geo-browsers can be integrated with qualitative data to create a more holistic analytical framework for understanding the complex nature of past settlement patterns. In addition, the dynamic nature of this integration creates a powerful educational tool. This paper reviews this ongoing research project with examples of reconstructions completed across the country, demonstrating analytical and educational possibilities through the integration of CAD programs with a range of other statistical, geographic, and visualization software.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_089
id ascaad2010_089
authors Hemmerling, Marco
year 2010
title Origamics
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 89-96
summary Folding strategies in architecture have been explored since the 1990s – if not before – as a method to generate spatial and structural concepts by applying complex geometries. These strategies are generally related to an analogue working method that involves paper folded models rather than digital form finding processes. Against this background the paper focuses on the impact and possibilities of folding principles from origami for the digital design process in using parametric software to generate integral and adaptive systems within an experimental and intuitive design approach.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_211
id ecaade2010_211
authors Hemmerling, Marco; Tiggemann, Anke
year 2010
title Emotive Spaces: Spatial interpretations based on the book “Der Ohrenzeuge” by Elias Canetti
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.125-132
doi https://doi.org/10.52842/conf.ecaade.2010.125
wos WOS:000340629400013
summary Focusing on a design methodology that is inspired by emotional conditions rather than rational specifications the paper describes the translation of literature into virtual spaces. In his book „Der Ohrenzeuge“ Elias Canetti describes 50 surreal characters, which were analyzed in the first step due to their anthropological features. The following interpretation of these featuresinto spatial qualities, using visualization software as an expressive medium, wasrealized by the definition of parameters for geometry, light, material and camera settings to achieve a spatial analogy of the given characters. The experimental approach led to a deeper understanding of spatial qualities in respect to atmospheric impressions and triggered at the same time the application of digital tools for an intuitive design process.
keywords Character; Atmosphere; Anthropological spaces; Visualization; Literature
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2017_042
id ecaade2017_042
authors Hitchings, Katie, Patel, Yusef and McPherson, Peter
year 2017
title Analogue Automation - The Gateway Pavilion for Headland Sculpture on the Gulf
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 347-354
doi https://doi.org/10.52842/conf.ecaade.2017.2.347
summary The Waiheke Gateway Pavilion, designed by Stevens Lawson Architects originally for the 2010 New Zealand Venice Biennale Pavilion, was brought to fruition for the 2017 Headland Sculpture on the Gulf Sculpture trail by students from Unitec Institute of Technology. The cross disciplinary team comprised of students from architecture and construction disciplines working in conjunction with a team of industry professionals including architects, engineers, construction managers, project managers, and lecturers to bring the designed structure, an irregular spiral shape, to completion. The structure is made up of 261 unique glulam beams, to be digitally cut using computer numerical control (CNC) process. However, due to a malfunction with the institutions in-house CNC machine, an alternative hand-cut workflow approach had to be pursued requiring integration of both digital and analogue construction methods. The digitally encoded data was extracted and transferred into shop drawings and assembly diagrams for the fabrication and construction stages of design. Accessibility to the original 3D modelling software was always needed during the construction stages to provide clarity to the copious amounts of information that was transferred into print paper form. Although this design to fabrication project was challenging, the outcome was received as a triumph amongst the architecture community.
keywords Digital fabrication; workflow; rapid prototyping; representation; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
doi https://doi.org/10.52842/conf.acadia.2011.372
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2010_30
id sigradi2010_30
authors Kaufmann, Stefan; Schubert Gerhard; Petzold Frank
year 2010
title Escaping the Model’s Scale
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 30-34
summary Over the last five years, the use of computer - controlled machinery in the building process has expanded immensely. With the help of parametric software, it has become possible not only to manage ever more complex structures but also to realize them using digital fabrication processes. These increased possibilities in turn place new demands on architectural teaching and its underlying didactic concepts. Taking the “WAVE 0.18” project as an example, this paper demonstrates the possibilities as well as the challenges of new didactic concepts and their practical application at the Chair for Architectural Informatics at the TU Munich.
keywords didactics, parametric design, digital fabrication, CAM, Scale 1:1.
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2010_156
id ecaade2010_156
authors Kobayashi, Yoshihiro; Grasso, Christopher J.; McDearmon, Michael J.
year 2010
title World16: Innovation and collaboration in VR technology
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.593-603
doi https://doi.org/10.52842/conf.ecaade.2010.593
wos WOS:000340629400064
summary This paper outlines the work and organizational framework of World16, a working group of 16 professors from around the world that engage in collaborative research on virtual reality (VR) technologies. Because of the abundance of VR software and the resulting fragmentation of research efforts in this field, World16 shares knowledge and resources using a common software package. A common research platform facilitates the sharing of data and the coordination of research efforts among member professors spread around the world. In addition to the organizational practices of World16’s project management team, various tools and methods of sharing research are described. Additionally, World16’s major research projects are outlined as well as the successes and failures of working within a shared software platform. Lastly, future work and goals of World16 are discussed, including the marketing and commercialization of several computational tools created by member professors.
keywords Virtual Reality; 3D graphics; City modeling; Parametric modeling; International organization
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_375769 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002