CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 12 of 12

_id sigradi2010_209
id sigradi2010_209
authors Aroztegui, Carmen
year 2010
title Superficies adulteradas: el muro en línea y la representación fílmica [Adulterated surfaces: the online wall and conematic representation]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 209-212
summary Online communities use a “wall” as a place to articulate non - synchronic communication among its members. Such a place, however, poorly explores the metaphor of the wall as a means of enhancing online experiences. Online “walls” do not explore or challenge the richness of a real wall, and they do not embrace new experiences that are only possible in the digital world. In order to tackle these issues, this paper analyzes three movie scenes where the everyday perception of the wall is altered by madness and estrangement. Finally, the paper suggests how these perceptions of the wall could be integrated into interfaces using touch screen technologies.
keywords online, wall, metaphor, film, representation
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2010_215
id ecaade2010_215
authors Barczik, Guenter
year 2010
title Uneasy Coincidence? Massive Urbanization and New Exotic Geometries with Algebraic Geometry as an Extreme Example
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.217-226
doi https://doi.org/10.52842/conf.ecaade.2010.217
wos WOS:000340629400023
summary We investigate the recent coincidence of rapid global urbanization and unprecedented formal freedom in architectural design and ask whether this coincidence is an uneasy one. To study an extreme case of the new exotic geometries made possible through CAAD, we employ algebraic surfaces to experimentally design architecture in an university-based research and experimental design project. Such surfaces exhibit unprecedented complexity and new geometric and topological features yet are highly sound and harmonious. We continue and extend our research presented at the eCAADe 2009 conference in Istanbul.
keywords Algebraic geometry; Shape; Sculpture; design; Tool; Experiment; Methodology; Software
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
wos WOS:000330322400034
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia10_103
id acadia10_103
authors Flöry, Simon; Pottmann, Helmut
year 2010
title Ruled Surfaces for Rationalization and Design in Architecture
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 103-109
doi https://doi.org/10.52842/conf.acadia.2010.103
summary In this work, we address the challenges in the realization of free-form architecture and complex shapes in general with the technical advantages of ruled surfaces. We propose a geometry processing framework to approximate (rationalize) a given shape by one or multiple strips of ruled surfaces. We discuss techniques to achieve an overall smooth surface and develop a parametric model for the generation of curvature continuous surfaces composed of ruled surface strips. We illustrate the usability of the proposed process at hand of several projects, where the pipeline has been applied to compute NC data for mould production and to rationalize large parts of free-form facades.
keywords geometry processing; architectural geometry; ruled surface; strip model; surface fitting
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_001
id caadria2010_001
authors Hsu, Tse-Wie; Shang-Chia Chiou and Jen Yen
year 2010
title Vine grammar generative system
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 9-18
doi https://doi.org/10.52842/conf.caadria.2010.009
summary Graphic designers always take both time and efforts when they are creating a decorative pattern with complicated curves and a great deal of motifs. Although there are many sourcebooks of decorative patterns, the satisfaction of the results couldn’t accomplish with designer’s requirements. Thus, graphic designers need a faster and easier system to create decorative patterns in classical style. There are a few effiencient methods to analysis curves and surfaces in the development of shape grammars. The purpose of this research is to develop Vine Grammar based on shape grammars. The vine grammar analyses principles hidden in the language of deisgn works to create the order, then generates design by using Bézier curves. This research also presents the development of a decorative pattern generative system called Shlishi by using FLASH Action Script 2.0. The grammar can be applied with computers and to verify rules quickly by Shlishi. The intention of this research is to make graphic designers to use these rules to create decorative patterns of plants in classic style and to produce satisfactory results for designer more efficiently or to make the results the source materials for the follow-up design works.
keywords Vine; Shlishi; decorative patterns; shape grammar; generative design system
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2010_240
id sigradi2010_240
authors Lombera, Rodríguez Hassán; Trujillo Rivero Andy
year 2010
title Real - time Minor Deformations that Result from Collisions Using Bump and Normal Mapping
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 240-243
summary This paper presents a method for simulating minor deformations that result from collisions on objects’ surfaces. The method alters only bump maps and leaves mesh geometry unchanged; it is suited to real - time applications where the primary concern is computational efficiency. The paper provides a representative model for deformable objects. Texture mapping and computer graphics techniques based on lighting are referenced as well. Finally, results are provided, along with the most noteworthy findings obtained with the use of this method.
keywords bump mapping, normal mapping, minor deformations, real - time.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_055
id ecaade2010_055
authors Peters, Brady; Olesen, Tobias S.
year 2010
title Integrating Sound Scattering Measurements in the Design of Complex Architectural Surfaces: Informing a parametric design strategy with acoustic measurements from rapid prototype scale models
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.481-491
doi https://doi.org/10.52842/conf.ecaade.2010.481
wos WOS:000340629400052
summary Digital tools present the opportunity for incorporating performance analysis into the architectural design process. Acoustic performance is an important criterion for architectural design. There is much known about sound absorption but little about sound scattering, even though scattering is recognized to be one of the most important factors in predicting the acoustic performance of architectural spaces. This paper proposes a workflow for the design of complex architectural surfaces and the prediction of their sound scattering properties. This workflow includes the development of computational design tools, geometry generation, fabrication of test surfaces, measurement of acoustic performance, the incorporation of this data into the generative tool. The Hexagon Wall is included and discussed as an illustrative design study.
keywords Architectural acoustics; Parametric design; Rapid prototyping
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2010_100
id ecaade2010_100
authors Stavric, Milena; Hirschberg, Urs; Wiltsche, Albert
year 2010
title Spatializing Planar Ornaments: Towards esthetic control in segmenting and building curved surfaces
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.437-443
doi https://doi.org/10.52842/conf.ecaade.2010.437
wos WOS:000340629400047
summary This paper gives insight into an ongoing funded research project dealing with architectural geometry and nonstandard fabrication methods. The innovative aspect of the project lies in the way it uses geometric ornamentation as a method to control the construction of double curved free-form surfaces out of planar building elements. After a short outline of the state of the art the paper gives an overview of the project’s novel constructive and esthetic approach to the planarization of curved forms, discusses the implications of the approach and presents some preliminary results.
keywords Architectural geometry; Nonstandard structures; Ornament; Mass customization
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_196
id acadia10_196
authors Tenu, Vlad
year 2010
title Minimal Surfaces as Self-organizing Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 196-202
doi https://doi.org/10.52842/conf.acadia.2010.196
summary Minimal surfaces have been gradually translated from mathematics to architectural design research due to their fascinating geometric and spatial properties. Tensile structures are just an example of their application in architecture known since the early 1960s. The present research relates to the problem of generating minimal surface geometries computationally using self-organizing particle spring systems and optimizing them for digital fabrication. The algorithm is iterative and it has a different approach than a standard computational method, such as dynamic relaxation, because it does not start with a pre-defined topology and it consists of simultaneous processes that control the geometry’s tessellation. The method is tested on triply periodic minimal surfaces and focused on several fabrication techniques such as a tensegrity modular system composed of interlocked rings (Figure 1).
keywords Minimal Surfaces
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

No more hits.

HOMELOGIN (you are user _anon_660338 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002