CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 449

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
doi https://doi.org/10.52842/conf.caadria.2010.283
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2010_127
id ascaad2010_127
authors Hubers, Hans
year 2010
title Collaborative Parametric BIM
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 127-134
summary The paper will be focussing on a number of digital design tools used in [our groups credentials]. A new laboratory called […] is developed with Virtual Reality for collaborative architectural design. A brief description of the systems and how they are used to support a design team is given. Synchronic and a-synchronic, local and inter-local communication is made possible. Methods for introducing sustainability in the digital design process and user participation over the Internet will be discussed. The results of the author’s PhD research “Collaborative architectural design in virtual reality” are used to develop a new approach in which team members use their own specific software. Swarm design applications developed in Virtools are used at the start of a project. The objects in the swarm can be urban and architectural functional volumes. Examples of the first are houses, offices, factories, roads and water ways. Examples of the second are working, dining, shopping and waiting spaces. Relations between the functional volumes with or without constraints make the functional volumes swarm to find equilibrium. Everything is dynamic, meaning that relations and functional volumes can change any time. Alternatives can be developed using different values for these parameters and by top-down intervention. When the final global layout has been chosen, using a criteria matrix with sustainability criteria to be judged by all participants, including the future users, a next phase is started amongst professionals using parametric design software. A study into different types of parametric design software makes clear why object parametric software can be used for IFC based BIM, while the more interesting process parametric software can not. To make this clear a pragmatic description of the IFC format is given with a simple example of such a file. Future research will be proposed in which applications of different disciplines are connected through the application programming interfaces, while integrating as much as possible the building information and knowledge in the IFC format.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:48

_id ecaade2010_004
id ecaade2010_004
authors Paio, Alexandra; Turkienicz, Benamy
year 2010
title A Grammar for Portuguese Historical Urban Design
doi https://doi.org/10.52842/conf.ecaade.2010.349
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.349-358
summary This paper suggests that Portuguese historical cities were based on a structured knowledge-based process from where it’s possible to retrieve not only a generative parametric urban grammar but also to construct a computational model capable to generate Portuguese planimetric proportionate and symmetrical urban grammar. The grammar is described graphically and discursively, followed by the introduction of a 2D shape grammars interpreter UrbanGENE. The 2D shape grammar interpreter will allow the user to interact with the genetic and generative principles of Portuguese historical urban design from 16th to 18th century and additionally be deployed in urban history teaching and learning.
wos WOS:000340629400037
keywords Urban design; Shape grammars; Generative and parametric design; UrbanGENE
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20108403
id ijac20108403
authors Aksamija, Ajla; Ivanka Iordanova
year 2010
title Computational Environments with Multimodal Representations of Architectural Design Knowledge
source International Journal of Architectural Computing vol. 8 - no. 4, p. 439
summary This article discusses interaction between multimodal representations of architectural design knowledge, particularly focusing on relating explicit and implicit types of information. The aim of the presented research is to develop a computational environment that combines several modes of representation, including and integrating different forms of architectural design knowledge. Development of an interactive digital-models library and ontological model of architectural design factors are discussed, which are complementary in nature. In a time when BIM software is seen as embodiment of domain knowledge and the future medium of architectural design, this paper presents an interaction between ontological representation of architectural design knowledge and its embodiment in interactive models, thus focusing on the process of design and design space exploration. In the digital environments that we propose, representation of different formats of knowledge, such as visual, linguistic or numeric, are integrated with relational and procedural information, design rules, and characteristics. Interactive search and query based on contextual constraints, and parametric variation of the model based on the information received from ontology are the underlying drivers for design exploration and development.
series journal
last changed 2019/05/24 09:55

_id ascaad2010_039
id ascaad2010_039
authors Almusharaf, Ayman M.; Mahjoub Elnimeiri
year 2010
title A Performance-Based Design Approach for Early Tall Building Form Development
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50
summary This paper presents a methodological interactive design approach within which structure is integrated into tall building form development. The approach establishes a synergy between generative and analytical tools to allow for parallel interaction of the formal and structural design considerations during the conceptual design phase. An integration of the associative modeling system, Grasshopper, and the structural analysis tool, ETABS was established, and a bi-directional feedback link between the two tools was initiated to guide the iterative from generation process. A design scenario is presented in this paper to demonstrate how the parametric generation and alteration of architectural form can be carried out based on instant feedback on the structural performance. Utilizing such a tool, architects can not only develop improved understanding of structural needs, but also realize their formal ideas structurally and materially.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac20108401
id ijac20108401
authors Attar, Ramtin; Robert Aish, Jos Stam, et al.
year 2010
title Embedded Rationality: A Unified Simulation Framework for Interactive Form Finding
source International Journal of Architectural Computing vol. 8 - no. 4, p. 39
summary This paper describes embedded rationality as a method for implicitly combining fabrication constraints into an interactive framework for conceptual design. While the concept of ‘embedded rationality’ has been previously discussed in the context of a parametric design environment, we employ this concept to present a novel framework for dynamic simulation as a method for interactive form-finding. By identifying categories of computational characteristics, we present a unified physics-solver that generalizes existing simulations through a constraint-based approach. Through several examples we explore conceptual approaches to a fixed form where the resulting effects of interacting forces are produced in real-time. Finally, we provide an example of embedded rationality by examining a constraint-based model of fabrication rationale for a Planar Offset Quad (POQ) panelization system.
series journal
last changed 2019/05/24 09:55

_id caadria2010_029
id caadria2010_029
authors Baerlecken, Daniel; Martin Manegold, Judith Reitz and Arne Kuenstler
year 2010
title Integrative parametric form-finding processes
doi https://doi.org/10.52842/conf.caadria.2010.303
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 303-312
summary The recent developments in digital technologies and contemporary design tools are initiating new approaches of form-finding based on parametric development of multiple geometries with simultaneous consideration of various aspects. This paper focuses on the use of advanced parametric CAD systems and reformulated construction logics to enhance the potential and possibilities of form finding processes. This approach is exemplified through the “Greenhouse Trauttmansdorff project”. The project demonstrates a form finding approach which is based on defined parameters that not only fulfil aesthetic and functional aspects, but simultaneously take structural properties and the resulting sun shading behaviour into account. We will explore within this paper how – next to the functional and contextual building requirements – required illumination levels inside the greenhouse create a feedback loop between the structural system and its cladding system.
keywords parametric representations; digital technologies; digital fabrication; variable systems; load bearing construction
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_313
id acadia10_313
authors Banda, Pablo
year 2010
title Parametric Propagation of Acoustical Absorbers
doi https://doi.org/10.52842/conf.acadia.2010.313
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 313-319
summary The following paper deals with a performance-driven morphogenetic design task to improve the conditions of room acoustics, using as a case study the material laboratory of the School of Architecture at Federico Santa Maria University of Technology. Combining contemporary Parametric Modeling techniques and a Performance- Based approach, an automatic generative system was produced. This system generated a modular acoustic ceiling based on Helmholtz Resonators. To satisfy sound absorption requirements, acoustic knowledge was embedded within the system. It iterates through a series of design sub-tasks from Acoustic Simulation to Digital Fabrication, searching for a suitable design solution. The internal algorithmic complexity of the design process has been explored through this case study. Although it is focused on an acoustic component, the proposed design methodology can influence other experiences in Parametric Design.
keywords Parametric Modeling, Sound Absorption & Acoustic Knowledge, Performance-Based Design, Design Task, Scripting, Digital Fabrication, Custom Tools, Honeycomb.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2010_272
id sigradi2010_272
authors Banda, Pablo
year 2010
title Absorbente de panal de abejas: explorando la adición de performance en sistemas de modelado paramétrico [Absorbing honeycomb: exploring performance addition in parametric modeling systems]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 272-275
summary This paper analyzes the characteristics of the development of generative systems, originated by embedding knowledge of sound absorption within a parametric design system and implementing Helmholtz Resonators for the decrement of low frequencies of sound. The encounter between physically - related knowledge and explicit geometric processes is observed by focusing on contemporary author skills and design postures to outline methodological traces for a performance - based approach to parametric design.
keywords parametric modeling, performance - based design, digital fabrication, scripting, custom tools
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia10_357
id acadia10_357
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2010
title A New Parametric Design Tool for Robot Milling
doi https://doi.org/10.52842/conf.acadia.2010.357
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 357-363
summary This paper proposes the use of parametric design software, which is generally used for real-time analysis and evaluation of architectural design variants, to create a new production immanent design tool for robot milling. Robotic constraints are integrated in the data flow of the parametric model for calculating, visualizing and simulating robot milling toolpaths. As a result of the design process, a physical model together with a milling robot control data file is generated.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia10_364
id acadia10_364
authors Cabrinha, Mark
year 2010
title Parametric Sensibility: Cultivating the Material Imagination in Digital Culture
doi https://doi.org/10.52842/conf.acadia.2010.364
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 364-371
summary Digital fabrication and parametric tools require not only digital dexterity but a robust material sensibility that precedes digital mediation. Developed through Gaston Bachelard’s concept of the graft, the material imagination acts as a reciprocal creative intelligence to today’s dominant formal imagination enabled through the fluid geometric precision in digital tools. This paper presents a series of “materials first” pedagogical approaches through which material constraints become operative design criteria in the development of digital skills. This intersection between analog and digital systems develops a parametric sensibility that is demonstrated through physical prototypes and full-scale installations. This approach is implicitly a critique of the disregard of material logic in many parametric approaches in particular, and digital design culture in general. Conversely, the development of a parametric sensibility through analog means enables the development of material primitives from which parametric tools can expand the material imagination while giving structure to it.
keywords Parametric, Digital Fabrication, Analog, Digital
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2010_419
id sigradi2010_419
authors Canuto, da Silva Robson; do Eirado Amorim Luiz Manuel
year 2010
title Da arquitetura paramétrica ao urbanismo paramétrico [Of parametric architecture and parametric urbanism]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 419-422
summary In recent decades, there has been an extraordinary advance in the development of parametric design tools, in which the parameters of a particular object are defined, but not the objects’ shape. These technologies have been transferred from design industries to architecture and urbanism to constitute what is known as parametric urbanism, a new trend of urban design development exemplified in the work of Zaha Hadid, whose large scale urban design proposals have frequently applied parametric design tools. This paper analyses the emergence of this new urban theory in order to identify its limits and to introduce future improvements.
keywords parametric urbanism; parametric architecture; parametric design; urban design; space syntax
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2010_042
id caadria2010_042
authors Celento, David
year 2010
title Open-source, parametric architecture to propagate hyper-dense, sustainable urban communities: parametric urban dwellings for the experience economy
doi https://doi.org/10.52842/conf.caadria.2010.443
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 443-452
summary Rapid developments in societal, technological, and natural systems suggest profound changes ahead if research in panarchical systems (Holling, 2001) is to be believed. Panarchy suggests that systems, both natural and man-made, rise to the point of vulnerability then fail due to disruptive forces in a process of ‘creative destruction.’ This sequence allows for radical, and often unpredictable, renewal. Pressing sustainability concerns, burgeoning urban growth, and emergent ‘green manufacturing’ laws, suggest that future urban dwellings are headed toward Gladwell’s ‘tipping point’ (2002). Hyper-dense, sustainable, urban communities that employ open-source standards, parametric software, and web-based configurators are the new frontier for venerable visions. Open-source standards will permit the design, manufacture, and sale of highly diverse, inter-operable components to create compact urban living environments that are technologically sophisticated, sustainable, and mobile. These mass-customised dwellings, akin to branded consumer goods, will address previous shortcomings for prefabricated, mobile dwellings by stimulating consumer desire in ways that extend the arguments of both Joseph Pine (1992) and Anna Klingman (2007). Arguments presented by authors Makimoto and Manners (1997) – which assert that the adoption of digital and mobile technologies will create large-scale societal shifts – will be extended with several solutions proposed.
keywords Mass customisation; urban dwellings; open source standards; parametric design; sustainability
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2010_078
id ecaade2010_078
authors Chiu, Yun-Ying
year 2010
title How To Make The Soft Skin?: A preliminary framework for the parametric design of the bionic soft skin
doi https://doi.org/10.52842/conf.ecaade.2010.237
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.237-242
summary This paper is a presentation of the preliminary framework for the design and fabrication of the soft-skin. Today, the digital technology applied in the architecture field is everywhere. However, there are still lots of fantastic free form architecture uncompleted and remained on the paper architecture or only the digital visual simulated model. Until now, most of the finished free form cases are consisted of the skin and bones, or only the bones. The complete soft-skin cases without the bones are fewer and the process remains untold. Based on the parametric environments and biology, how might you design a free form without the bones? How could you make the soft skin stand up? The research starts a series of exploration of the design and fabrication for the soft skin, and seeks to propose the preliminary framework as a helpful reference for the designers who deal with the soft skin project.
wos WOS:000340629400025
keywords Soft skin; Bionic architecture; Parametric design; Grasshopper
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ijac20108301
id ijac20108301
authors Chok, Kermin; Mark Donofrio
year 2010
title Abstractions for information based design
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 233-256
summary This paper discusses how live linkages between parametric geometry, structural analysis and optimization can be leveraged to explore an architectural massing from different perspectives of optimum assuming a set of cost and value characteristics. Broad performance measures such as program area, cladding surface and structural quantities were computed for each geometry variation and collected. Optimums from different perspectives (structure, developer, designer) were extracted for each height category and compared. To further inform and engage stakeholders, a variety of visualization and filtering techniques have been implemented. These new techniques and associated distillation of data aids the design team in understanding the design space. A script based approach towards geometry and data management has led to a shift towards active option evaluation and a more interactive approach to form exploration. A generic workflow for structural analysis, design and optimization has been implemented and this ability to engineer at a greater velocity will move the design profession towards a more collaborative and information based design environment.
series journal
last changed 2019/05/24 09:55

_id ecaade2010_140
id ecaade2010_140
authors Chronis, Angelos; Liapi, Katherine A.
year 2010
title Parametric Approach to the Bioclimatic Design of a Student Housing Building in Patras, Greece
doi https://doi.org/10.52842/conf.ecaade.2010.313
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.313-319
summary A new housing complex on the Campus of the University of Patras, Greece, is expected to serve as a test-bed for experimentation with a parametric design process that integrates significant climatic data. To optimize the environmental performance of the proposed housing complex a parametric design algorithm has been developed. The algorithm links the weather data in the area with the site topography and the basic geometric features of the buildings on the site. To explore the interaction of the building features with the prevailing winds in the area and the solar exposure throughout the year various software applications, including computational fluid dynamics (CFD) simulations, have been utilized. The inclusion of wind data in the algorithm renders it particularly effective. The developed parametric process has been useful during the early design phase when studies on various patterns for arranging the buildings on the site were conducted. The parametric process has facilitated the configuration of the typical building block as well.
wos WOS:000340629400033
keywords Bioclimatic design; Parametric design; Design algorithms; Sun control; Wind analysis; CFD in building design
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2010_015
id caadria2010_015
authors Coorey, Ben
year 2010
title Scalability: parametric strategies from exoskeletons to the city
doi https://doi.org/10.52842/conf.caadria.2010.155
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 155-163
summary This research will explore and provide an initial study into the diversity of contemporary computational design methodologies emerging in the field of architecture. It will rely on modern philosophical and mathematical ideas as a resource to integrate a seemingly disparate set of design techniques into a unified framework for architectural design. The explorations in this paper will demonstrate a preliminary study into various methods of operating across this framework through a series of parametric design experiments that span across multiple scales. The result indicates new techniques and skills that are becoming increasingly important for architectural design.
keywords Parametric; generative; systems; interface; design
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia10_211
id acadia10_211
authors Crawford, Scott
year 2010
title A Breathing Building Skin
doi https://doi.org/10.52842/conf.acadia.2010.211
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 211-217
summary This paper details an initial exploration into the development of a breathing building skin. This research proposes a system of diaphragms as an alternative to the use of fans for distributing volumes of air. The driving concepts for this project are the three types of evolutionary adaptation: flexibility, acclimation, and learning. Of particular interest is how these biological concepts relate to architectural design. Parametric modeling was used throughout the project to study a family of folding geometry. This allowed for the iterative development of a complex part that is capable of being manufactured from a single sheet of material. Preliminary calculations point to this system being several times more energy efficient than a fan at moving a given volume of air per Watt of electricity. This research is significant as it puts forth a potentially energy efficient and highly integrated alternative to fans, while also illustrating a way of relating biological concepts of adaptation to architectural design.
keywords adaptation, responsive, kinetic, ventilation, space frame, parametric
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_654893 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002