CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 354

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2013.209
wos WOS:000351496100021
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2013_135
id caadria2013_135
authors Williams, Nick; Daniel Davis, Brady Peters, Alexander Peña De León,  Jane Burry and Mark Burry
year 2013
title FabPOD: An Open Design-to-Fabrication System
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 251-260
doi https://doi.org/10.52842/conf.caadria.2013.251
wos WOS:000351496100025
summary Digital workflows from the design to the production of buildings have received significant recent attention in architectural research. The need for both integrated systems for design collaboration (Boeykens and Neuckermans, 2006) and clear and flexible communication flows for non-standard fabrication outcomes have been identified as fundamental (Scheurer, 2010). This paper reports on the development of a digital “design system” for the design and prototyping of an acoustic enclosure for meetings in a large open work environment, theFabPod. The aim was to keep this system open for temporal flexibility in as many aspects of the finalisation of the design as possible. The system provides novel examples of both integrated collaboration and clear communication flow.  (1) Acoustics is included as a design driver in early stages through the connection of digital simulation tools with design models. (2) Bi-directional information flows and clear modularisation of workflow underpins the system from design through to fabrication and assembly of the enclosure. Following the completion and evaluation of the FabPod prototype, the openness of the system will be tested through its application in subsequent design and prototyping iterations. Design development will respond to performance testing through user engagement methods and acoustic measurement.  
keywords Digital workflow, Prototyping, Acoustic simulation, Collaborative design 
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2010_213
id ascaad2010_213
authors Babsail, Mohammad; Mahjoub Elnimeiri
year 2010
title A Computer Process for Investigating Wind Power Production in Building Integrated Wind Turbines
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 213-220
summary This paper reports on the computer process to be used in an ongoing research to investigate the effect of architectural parameters of tall buildings on the incorporation of wind turbines. The process combines a generative modeling tool (Grasshopper) and a performance based CFD tool (Virtualwind). The process is demonstrated on three typical tall building plan configurations. The wind speed was simulated at certain locations to demonstrate the ability of tall buildings to enhance the wind speed and thus maximize the energy produced by wind turbines located between twin towers. The process to predict wind power production is lastly listed.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_279
id ascaad2010_279
authors Celani, G.; L. Medrano; J. Spinelli
year 2010
title Unicamp 2030: A plan for increasing a university campus in a sustainable way and an example of integrated use of CAAD simulation and computational design strategies
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 279-286
summary The state university of Campinas, Unicamp, is a public university in upstate São Paulo, Brazil, ranked the second best in the country. It was founded in 1966, and its main campus started to be built in 1967, in the suburbs of Campinas, nowadays a two-million people city. The area of the campus is almost 3 million square meters (300 hectares), with a total built area of 522.000 m2 and a population of 40 thousand people - 30 thousand students, 2 thousand faculty members and almost 8 thousand staff members. The campus’ gross population density is 133 people per hectare. Less than 6% of the total campus area is presently occupied. The design of Unicamp's campus is based on concepts that were typical of the modern movement, with reminiscences of corbusian urbanism, in which preference is given to cars and buildings are spread apart on the territory, with little concern to the circulation of pedestrians. The standard building type that has been built on campus since the 1970's is based on non-recyclable materials, and has a poor thermal performance. Unicamp is expected to double its number of students by the year 2030. The campus density is thus expected to grow from 600 people per hectare to almost 1,000 people per hectare. The need to construct new buildings is seen as an opportunity to correct certain characteristics of the campus that are now seen as mistakes, according to sustainability principles. This paper describes a set of proposals targeting the increase of the campus' density in a sustainable way. The plan also aims at increasing the quality of life on campus and diminishing its impact on the environment. The main targets are: - Reducing the average temperature by 2oC; - Reducing the average displacement time by 15 minutes; - Increasing the campus' density by 100%; - Reducing the CO2 emissions by 50%. // In order to achieve these goals, the following actions have been proposed: Developing a new standard building for the university, incorporating sustainability issues, such as the use of renewable and/or recyclable materials, the installation of rainwater storage tanks, the use of natural ventilation for cooling, sitting the buildings in such a way to decrease thermal gain, and other issues that are required for sustainable buildings' international certifications. To assess the performance of the new standard building, different simulation software were used, such as CFD for checking ventilation, light simulation software to assess energy consumption, and so on. 1. Filling up under-utilized urban areas in the campus with new buildings, to make better use of unused infrastructure and decrease the distance between buildings. 2. Proposing new bicycle paths in and outside campus, and proposing changes in the existing bicycle path to improve its safety. 3. Developing a landscape design plan that aims at creating shaded pedestrian and bicycle passageways.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:37

_id ecaade2010_140
id ecaade2010_140
authors Chronis, Angelos; Liapi, Katherine A.
year 2010
title Parametric Approach to the Bioclimatic Design of a Student Housing Building in Patras, Greece
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.313-319
doi https://doi.org/10.52842/conf.ecaade.2010.313
wos WOS:000340629400033
summary A new housing complex on the Campus of the University of Patras, Greece, is expected to serve as a test-bed for experimentation with a parametric design process that integrates significant climatic data. To optimize the environmental performance of the proposed housing complex a parametric design algorithm has been developed. The algorithm links the weather data in the area with the site topography and the basic geometric features of the buildings on the site. To explore the interaction of the building features with the prevailing winds in the area and the solar exposure throughout the year various software applications, including computational fluid dynamics (CFD) simulations, have been utilized. The inclusion of wind data in the algorithm renders it particularly effective. The developed parametric process has been useful during the early design phase when studies on various patterns for arranging the buildings on the site were conducted. The parametric process has facilitated the configuration of the typical building block as well.
keywords Bioclimatic design; Parametric design; Design algorithms; Sun control; Wind analysis; CFD in building design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
doi https://doi.org/10.52842/conf.ecaade.2010.641
wos WOS:000340629400069
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2010_129
id sigradi2010_129
authors Lyon, Gottlieb Arturo; García Alvarado Rodrigo
year 2010
title Variaciones intensivas: diseño paramétrico de edificios en altura basado en análisis topológico [Intensive variations: parametric design of tall buildings based on topological analysis]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 129-132
summary Several building works have demonstrated the possibilities of architectural design based on structural performance. This work discusses some examples and digital design strategies that approach this issue, as well as an exercise for a tower generated through topological optimization. That experience presents alternatives for a traditional office tower in Santiago, Chile, the Torre Santa Maria, based on generative design strategies for the incorporation of structural and environmental requirements to define parametric models. The experience and the capabilities studied reveal an intensive variation of architectural shape. This approach challenges conventional building regularity and suggests new ways of designing based on material performance.
keywords parametric design, topological analysis, tall buildings, environmental performance, structural performance
series SIGRADI
email
last changed 2016/03/10 09:55

_id 4d7d
id 4d7d
authors Marionyt Tyrone Marshall
year 2010
title HYGROSCOPIC CLIMATIC MODULATED BOUNDARIES: A Strategy for Differentiated Performance Using a Natural Circulative and Energy Captive Building Envelope in Hot and Moisture Rich Laden Air Environments
source Perkins+Will Research Journal, Vol 02.01, 41-53
summary The operation and construction of buildings account for almost half of the energy use in the United States. To meet global climate change targets, energy consumption of buildings in the long term must be reduced as well as carbon dioxide emissions. This article explores a theoretical building envelope that generates energy and produces water by drawing water vapor out of the air to deliver new sources of water; it lowers indoor humidity in hot and humid climates. The design in this model considers materiality, surface area and environmental conditions to influence build- ing form. The case in this article considers materials and systems application in the design of the building envelope. The hygroscopic building envelope design strategically senses varying conditions of concentration and density of moisture laden air to provide visual indications of its performance. It is a building skin that emulates biological processes by creating pressure differences and transferring energy in various forms.
keywords biomimetics, building envelope, building façade, computational design, computational control, humidity, hygroscopic, renewable resources
series journal paper
type normal paper
email
more http://www.perkinswill.com/research/research-journal-vol.-02.01.html
last changed 2010/10/31 02:39

_id ecaade2010_055
id ecaade2010_055
authors Peters, Brady; Olesen, Tobias S.
year 2010
title Integrating Sound Scattering Measurements in the Design of Complex Architectural Surfaces: Informing a parametric design strategy with acoustic measurements from rapid prototype scale models
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.481-491
doi https://doi.org/10.52842/conf.ecaade.2010.481
wos WOS:000340629400052
summary Digital tools present the opportunity for incorporating performance analysis into the architectural design process. Acoustic performance is an important criterion for architectural design. There is much known about sound absorption but little about sound scattering, even though scattering is recognized to be one of the most important factors in predicting the acoustic performance of architectural spaces. This paper proposes a workflow for the design of complex architectural surfaces and the prediction of their sound scattering properties. This workflow includes the development of computational design tools, geometry generation, fabrication of test surfaces, measurement of acoustic performance, the incorporation of this data into the generative tool. The Hexagon Wall is included and discussed as an illustrative design study.
keywords Architectural acoustics; Parametric design; Rapid prototyping
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_030
id caadria2010_030
authors Toth, Bianca; Robin Drogemuller and John Frazer
year 2010
title Information dependencies between architects and services engineers for early design evaluation: a framework for an energy design tool for architects
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 313-222
doi https://doi.org/10.52842/conf.caadria.2010.313
summary Effective strategies for the design of efficient and environmentally sensitive buildings require a close collaboration between architects and engineers in the design of the building shell and environmental control systems at the outset of projects. However, it is often not practical for engineers to be involved early on in the design process. It is therefore essential that architects be able to perform preliminary energy analyses to evaluate their proposed designs prior to the major building characteristics becoming fixed. Subsequently, a need exists for a simplified energy design tool for architects. This paper discusses the limitations of existing analysis software in supporting early design explorations and proposes a framework for the development of a tool that provides decision support by permitting architects to quickly assess the performance of design alternatives.
keywords Performance-based design; energy simulation; decision support; design process; information dependencies
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2010_231
id ascaad2010_231
authors Turrin, M.; R. Stouffs and S. Sariyildiz
year 2010
title Parametric Design of the Vela Roof
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 231-240
summary Due to the increased request for representative structures and for spaces to be used independent of the weather conditions, contemporary cities increasingly integrate public covered spaces (shadowed squares and streets, courtyards, historic commercial galleries, etc.) in the urban fibre. Facing the design of large roof structures for semi outdoor spaces is increasingly common for architects and engineers. When focusing on large roofs, aesthetics, structural performance and economics often dominate the design process. However, the current increased emphasis on energy-related aspects generates new challenges. Particularly, the use of renewable energy resources needs to be confronted. In this paper we will address the subject through a case study whose design aimed at integrating performance evaluations in the very early stages of the process. The case study focuses on the so-called “Vela roof”. This roof is part of a larger project currently under construction in Bologna (Italy). The focus of the study concerns the use of on-site renewable climate (energy) resources with special attention given passive reduction of summer overheating and daylight. For these tasks a parametric model was developed to support the decision making process and the paper will present its potential with respect to performance-oriented design during the conceptual design phase of roof structure. The very first conceptual design developed by the architectural office was assumed as a starting point for the inclusion of performance criteria. In the preliminary design of the roof uncomfortable conditions were expected under the whole roof in the summer. Various strategies for improving the thermal comfort were investigated, involving a large set of combined systems. Not all of these will be detailed in this paper. Instead we will focus on the ones directly affected by the geometry of the roof. Those are mainly air flow for cooling and the reduction of solar gain, in combination with their effects on daylight. Their investigation was based on a chain of dependencies to be integrated in the design process. With respect to that, parametric modelling was used. Parametric modelling allows both geometrical entities and their relationships to be represented. These relationships are structured in a hierarchical chain of dependencies, established during the preliminary parameterization process. The independent properties of the model are usually expressed through independent parameters, and their variations generate different configurations of the model. By making use of this potential, three project scales were parametrically explored. At the large scale, parametric variations of the overall shape of the roof were investigated in relation to cooling through ventilation and here the parametric model allowed for the generation of both different configurations of the roof, including its structural morphology and variations of its structural tessellation. At the medium scale, the integration of openable modules was investigated in relation to air extraction for cooling; with respect to this, the parametric model allows exploring openings based on variations of size and distribution. At the small scale, various options were explored for the cladding system, in order to reduce the direct solar gain while still allowing the income of indirect natural light. The parametric model was used to investigate the configuration of self-shading modules and their integration in the structure. Specific emphasis will be given to the small scale. The advantages in design process and the current limits of the parametric modelling approach used here will be discussed in the paper.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ascaad2010_189
id ascaad2010_189
authors Allahaim, Fahad; Anas Alfaris and David Leifer
year 2010
title Towards Changeability
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 189-200
summary Many buildings around the world have undergone successive changes over their life cycles. Regardless of the type or size of a building there are usually requirements for change due to several unanticipated forces and emerging uncertainties that act upon them. These changes might be in the building’s spatial, structural or service systems. This can be due to changes in the needs of occupants, the market demand or technological advances. Although buildings undergo change, current design practice does not address this and buildings are still designed as if they will remain static. This paper proposes an Adaptable Buildings Design (ABD) Framework to address the issue of adaptability in building design. Using this methodology uncertainties and future changes are first identified. To increase the building’s longevity, flexibility options are embedded and design rules are formulated to trigger these options when necessary. The value of adaptability is then assessed by implementing several simulations using Real Options Analysis (ROA). To demonstrate the approach, the ABD is applied to a multi-use commercial building case study. Flexibility is embedded in the building’s design across several systems allowing it to change and evolve over time based on a set of design rules. The buildings adaptability is then assessed using ROA. Positive results demonstrate the strength of the proposed methodology in addressing future change and uncertaintie.
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2010_003
id caadria2010_003
authors Vaughan, Josephine and Michael J. Ostwald
year 2010
title Refining a computational fractal method of analysis: testing Bovill’s architectural data
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 29-38
doi https://doi.org/10.52842/conf.caadria.2010.029
summary In 1996 Bovill applied Mandelbrot’s fractal method for calculating the approximate visual complexity of images to architecture. This method is one of only a limited number of quantifiable approaches to provide a measure of the relative complexity of an architectural form. However, the method has rarely been tested despite many scholars uncritically repeating Bovill’s conclusions. While Bovill’s original work was calculated manually, a software program, Archimage, is presently being developed by the authors as a tool to assist architectural designers and researchers to understand the visual complexity of building designs. The present research returns to Bovill’s original architectural data (elevations of famous buildings) and re-calculates the results published therein using Archimage and the commercial software Benoit. These results are then compvared with those produced by Bovill (1996) and Lorenz (2003), to determine if any consistency can be found between the sets. The level of consistency will assist in determining the validity of Bovill’s method and provide important data in the ongoing process to refine the Archimage software and the analytical method.
keywords Computational analysis tools; design analysis; visual complexity
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2011_093
id ecaade2011_093
authors Veliz, Alejandro; Sills, Pablo
year 2011
title Digital design of reconstruction proposals in Chile
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.673-678
doi https://doi.org/10.52842/conf.ecaade.2011.673
wos WOS:000335665500078
summary After the earthquake and tsunami occurred in Chile on February 27th 2010, the Technical University Federico Santa Maria was asked to contribute with reconstruction proposals for the commercial infrastructure destroyed in the town “San Juan Bautista”. Located 600 km (~370 mi) away from the continent, this town is not just the home of several endemic species, but is also located next to a National Protected Area and UNESCO Biosphere Reserve. Within this context, the design problem consisted on the development of a component-based strategy and prefabrication requirements, and to reduce to the minimum the implied logistics and environmental impacts of the new buildings. With a Studio of 23 final year students and the support of the Architecture Firms Association, 11 projects were developed using digital tools such as visual programming and digital fabrication. Finally, technical documentation was produced and delivered to the local and government authorities.
keywords Visual programming; post-disaster reconstruction; prefabrication; constraintbased design; building components
series eCAADe
email
last changed 2022/05/01 23:21

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2010_039
id ascaad2010_039
authors Almusharaf, Ayman M.; Mahjoub Elnimeiri
year 2010
title A Performance-Based Design Approach for Early Tall Building Form Development
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50
summary This paper presents a methodological interactive design approach within which structure is integrated into tall building form development. The approach establishes a synergy between generative and analytical tools to allow for parallel interaction of the formal and structural design considerations during the conceptual design phase. An integration of the associative modeling system, Grasshopper, and the structural analysis tool, ETABS was established, and a bi-directional feedback link between the two tools was initiated to guide the iterative from generation process. A design scenario is presented in this paper to demonstrate how the parametric generation and alteration of architectural form can be carried out based on instant feedback on the structural performance. Utilizing such a tool, architects can not only develop improved understanding of structural needs, but also realize their formal ideas structurally and materially.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_313
id acadia10_313
authors Banda, Pablo
year 2010
title Parametric Propagation of Acoustical Absorbers
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 313-319
doi https://doi.org/10.52842/conf.acadia.2010.313
summary The following paper deals with a performance-driven morphogenetic design task to improve the conditions of room acoustics, using as a case study the material laboratory of the School of Architecture at Federico Santa Maria University of Technology. Combining contemporary Parametric Modeling techniques and a Performance- Based approach, an automatic generative system was produced. This system generated a modular acoustic ceiling based on Helmholtz Resonators. To satisfy sound absorption requirements, acoustic knowledge was embedded within the system. It iterates through a series of design sub-tasks from Acoustic Simulation to Digital Fabrication, searching for a suitable design solution. The internal algorithmic complexity of the design process has been explored through this case study. Although it is focused on an acoustic component, the proposed design methodology can influence other experiences in Parametric Design.
keywords Parametric Modeling, Sound Absorption & Acoustic Knowledge, Performance-Based Design, Design Task, Scripting, Digital Fabrication, Custom Tools, Honeycomb.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_713921 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002