CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 442

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20108101
id ijac20108101
authors Phan, Viet Toan; Seung Yeon Choo
year 2010
title Augmented Reality-Based Education and Fire Protection for Traditional Korean Buildings
source International Journal of Architectural Computing vol. 8 - no. 1, 75-91
summary This study examines an application of Augmented Reality technology (AR) for Korean Cultural Traditional Buildings, specifically, the Namdaemun Gate, "National Treasure No 1" of the Republic of Korea. Unfortunately, in February 2008, the Namdaemun Gate burned down, despite the efforts of many firemen, as the main difficulty was getting the fire under control without any structural knowledge of the wooden building. Hence, with the great advances in digital technology, an application of virtual technical information to traditional buildings is needed, and the new technology of AR offers many such advantages for digital architectural design and construction fields. While AR is already being considered as new design approach for architecture, outdoor AR is another practical application that can take advantage of new wearable computer equipment (Head-mounted display also know as HMD, position and orientation sensors, and mobile computing) to superimpose virtual graphics of traditional buildings (in this case, Namdaemun Gate) in a real outdoor scene. Plus, outdoor AR also allows the user to move freely around and inside a 3D virtual construction, thereby offering important training opportunities, for example, specific structural information in the case of firemen and mission planning in the case of a real-life emergency. In this example, the proposed outdoor AR system is expected to provide important educational information on traditional wooden building for architects, archaeologists, and engineers, while also assisting firemen to protect such special buildings.
series journal
last changed 2019/05/24 09:55

_id ascaad2010_189
id ascaad2010_189
authors Allahaim, Fahad; Anas Alfaris and David Leifer
year 2010
title Towards Changeability
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 189-200
summary Many buildings around the world have undergone successive changes over their life cycles. Regardless of the type or size of a building there are usually requirements for change due to several unanticipated forces and emerging uncertainties that act upon them. These changes might be in the building’s spatial, structural or service systems. This can be due to changes in the needs of occupants, the market demand or technological advances. Although buildings undergo change, current design practice does not address this and buildings are still designed as if they will remain static. This paper proposes an Adaptable Buildings Design (ABD) Framework to address the issue of adaptability in building design. Using this methodology uncertainties and future changes are first identified. To increase the building’s longevity, flexibility options are embedded and design rules are formulated to trigger these options when necessary. The value of adaptability is then assessed by implementing several simulations using Real Options Analysis (ROA). To demonstrate the approach, the ABD is applied to a multi-use commercial building case study. Flexibility is embedded in the building’s design across several systems allowing it to change and evolve over time based on a set of design rules. The buildings adaptability is then assessed using ROA. Positive results demonstrate the strength of the proposed methodology in addressing future change and uncertaintie.
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
doi https://doi.org/10.52842/conf.caadria.2010.283
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2010_097
id ecaade2010_097
authors Kontovourkis, Odysseas
year 2010
title Computer-Generated Circulation Diagrams in Macro-Scale Design Investigation
doi https://doi.org/10.52842/conf.ecaade.2010.623
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.623-632
wos WOS:000340629400067
summary This paper demonstrates an ongoing research investigation, which is the continuation of the author’s doctoral research on a computer-based design approach that is used for the generation of circulation diagrams, and the spatial organization of functional areas in macro-scale design level. The paper introduces a computer program that is based on the idea of particle behavior modeling. The program simulates the human movement behavior in real time and in parallel, based on simple rules of interaction between particles. The model is called a ‘virtual force’ model, since the interaction between particles, and hence human movement behavior modeling, is achieved by using various forces that are acting upon each particle. Any changes on the rules of interaction can produce different results, allowing architects to investigate various design possibilities and study the human movement behavior in different design case studies. In this paper the idea of modeling such movement behavior is investigated and developed further, in order for it to be used for the design of circulation systems, and to suggest solutions to problems that occur in public areas of cities.
keywords Circulation diagrams; Human movement behavior; Macro-scale design
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_207
id ecaade2010_207
authors Pellitteri, Giuseppe; Lattuca, Raimondo; Conti, Giuseppe; De Amicis, Raffaele
year 2010
title A Generative Design System to Interactively Explore Different Urban Scenarios
doi https://doi.org/10.52842/conf.ecaade.2010.851
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.851-859
wos WOS:000340629400091
summary In this paper we present a new parametric approach based on urban regulation, in order to generate digital models of building, directly within a three-dimensional geo-referenced environment. The system allows user, through implementation of specific generative procedures, to manage interactive architectural design processes. The designer is able to explore all possible infinite scenarios and the various possible design alternatives, by changing the parameters values and verifying in real time the results of the changes. This paper presents a short review of the main related works and an experiment.
keywords Generative design; Architectural design; Urban design; Interactive design
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2010_125
id sigradi2010_125
authors Portillo, Burghi Juan Pablo; García Amen Fernando;Flores Luis
year 2010
title R:DAR Regions, Areas, and Directioning in Augmented Reality: un estudio para el móvil Samsung I8000 Omnia II [RA:DAR Regions, Areas, and Directioning in Augmented Reality: a case study for the Samsung mobile phone 18000 Omnia II]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 125-128
summary This work stems from our research on augmented reality (AR); it is focused on the development of AR applications for smartphones. This research was motivated by many factors including the reality that: mobile phones have become commonplace in our societies, there is high demand for access to real - time information, and that smartphones are practical, powerful, and compact devices that are available in developed as well as emerging economies. In light of such facts this work presents a case study and proposes the development of an application capable of linking the most remarkable features of smarthphones (GPS, camera, accelerometer, internet access, and compass).
keywords application; augmented reality; information; real - time; smartphone
series SIGRADI
email
last changed 2016/03/10 09:58

_id ascaad2010_271
id ascaad2010_271
authors Sharkasi, Nour; Ramzi Hassan and Caroline M. Hagerhal
year 2010
title Presence in Virtual Cave
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 271-278
summary Virtual Reality (VR) is usually recognized as a tool that enables the viewer to move freely in a three dimensional digital environment. In this virtual world, different levels of immersion could be reached. Using VR to visualize sites and places from the past, presents and future is widely acknowledged. This study is making use of a recently installed U-Cave theatre at Birzeit University (BZU) in Palestine and a Con-Cave VR theatre at the Norwegian University of Life Sciences (UMB).In the study, we test hypotheses connected to presence in virtual reality environments, using the case of historical sites. Historical sites in general are important for reasons of cultural identification and environmental integrity. In many historical sites, it is difficult for a layperson to read and understand the meaning of the site, for that the remaining ruins don’t provide enough information. This study will contribute to improving the public understanding for historical sites by unfolding the role of Virtual Reality to overcome the harsh reality of many damaged historical sites. The story-line of the site can be easily portrayed by re-constructing the original site in a virtual environment. The study also elaborates on the enriched sense of presence made possible by implementing different levels of details in the VR environment. Presence in VR environments is usually defined as “being there”, with high consideration of the physical ether of the virtual environment, the definition confines attention to the sensation of place. This study calls for expanding the attention to the dimension of time that is made possible by innovative design of VR environment. The study argues that virtual reality technology does not only provide a 3-D experience to subjects, it can also add a fourth dimension by conveying the unconsciousness of man from the meanwhile moment to a different timeframe. Based on the current knowledge on presence in virtual environments, we will use a questionnaire to measure subjective presence for the two VR theatre systems. The study will make use of the following factors in order to determine the degree of presence in the virtual environment: (1) naturalness of interface design and involvement, (2) control and interaction, (3) quality of technical capabilities, and (4) negative effects. The outcome of the study will verify or falsify some of the following hypotheses: • There is a correlation between modeling techniques and presence. The perception of the visual experience differs between traditional media and an immersive VR environment. • A presentation of a historical site in a VR-Cave environment will increase our subject’s awareness of the identity of the historical site. • The presence level is correlated to previous real exposure. Subjects who had been to a ruined historical site in real life, would experience higher level of presence toward the VR presentation than those who had not been to the historical site in reality. • Because of the display enclosure surround effect, it is believed that presence in a Con-Cave would be higher than of U-Cave VR environment.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:47

_id ecaade2010_063
id ecaade2010_063
authors Gourdoukis, Dimitris
year 2010
title Protocol Growth: Development of adaptable city models through self-organization
doi https://doi.org/10.52842/conf.ecaade.2010.605
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.605-614
wos WOS:000340629400065
summary Protocol Growth attempts to approach the process of design in an alternative, bottom-up fashion, that is not based on master planning but instead on the development of a protocol that would allow infrastructure to ‘selforganize’, adapting at the same time to the conditions that it encounters. First, the concept of the protocol is explained and positioned in its historical context in order to better understand the needs that it satisfies. Then the characteristics of such an approach are illustrated through the example of a structure that aims to the development of a system that would allow for a settlement to face the rising of the water level because of global warming. The model proposed, instead of following a ‘long term’ plan adapts itself to the situation that it encounters and grows in height following an algorithm designed for that reason.
keywords City growth; Protocol; Self-organization; Computation; Cellular automata
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2010_127
id ascaad2010_127
authors Hubers, Hans
year 2010
title Collaborative Parametric BIM
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 127-134
summary The paper will be focussing on a number of digital design tools used in [our groups credentials]. A new laboratory called […] is developed with Virtual Reality for collaborative architectural design. A brief description of the systems and how they are used to support a design team is given. Synchronic and a-synchronic, local and inter-local communication is made possible. Methods for introducing sustainability in the digital design process and user participation over the Internet will be discussed. The results of the author’s PhD research “Collaborative architectural design in virtual reality” are used to develop a new approach in which team members use their own specific software. Swarm design applications developed in Virtools are used at the start of a project. The objects in the swarm can be urban and architectural functional volumes. Examples of the first are houses, offices, factories, roads and water ways. Examples of the second are working, dining, shopping and waiting spaces. Relations between the functional volumes with or without constraints make the functional volumes swarm to find equilibrium. Everything is dynamic, meaning that relations and functional volumes can change any time. Alternatives can be developed using different values for these parameters and by top-down intervention. When the final global layout has been chosen, using a criteria matrix with sustainability criteria to be judged by all participants, including the future users, a next phase is started amongst professionals using parametric design software. A study into different types of parametric design software makes clear why object parametric software can be used for IFC based BIM, while the more interesting process parametric software can not. To make this clear a pragmatic description of the IFC format is given with a simple example of such a file. Future research will be proposed in which applications of different disciplines are connected through the application programming interfaces, while integrating as much as possible the building information and knowledge in the IFC format.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:48

_id acadia10_305
id acadia10_305
authors Perry, Chris
year 2010
title Anticipatory Architecture | Extrapolative Design
doi https://doi.org/10.52842/conf.acadia.2010.305
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 305-312
summary The instrumental and aesthetic implications of architecture’s engagement with science and technology has a long history, part of which includes the period following the Second World War when the rapid technological advances of the Industrial Revolution merged with a general cultural mindset characterized by themes of progress and futurism. For postwar thinkers like Reyner Banham, this interest in a futurist architecture suggested an approach to design rooted less in architectural precedent than technological extrapolation. While a precedent based approach might be viewed as more disciplinary in nature, technological extrapolation suggests an inclination towards interdisciplinarity. Thus, Banham’s concept of extrapolation encouraged architects to look beyond the limits of their own discipline as a means of discovering new forms of knowledge and expertise. Indeed Banham was engaged in taking stock of the technological advances particular to his time while simultaneously anticipating the implication of these advancements for the future. To this extent, the postwar period and its inherent futurism provides a useful and poignant lens through which to take stock of our own technological climate. Given the equally revolutionary advances in computer technology in the last twenty years, our contemporary moment can be seen as having many parallels with the postwar period, and not unlike the postwar generation of architects and thinkers, contemporary designers are inevitably faced with the challenge of engaging new technological advances and their implications for architecture. In our current age of digital and biological technologies, these advances are both rapid and widespread, and include LED and fiber-optic lighting systems, motion sensing, interface design, solar tracking photovoltaic skins and wind harnessing technologies, magnetic levitation, and robotics. This paper begins with an examination of design work and criticism from the postwar period and proceeds to utilize that examination as an historical framework for addressing issues of contemporary design and 21st Century technological advancement.
keywords Architecture, Anticipatory, Technology, Science
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ecaade2010_114
id ecaade2010_114
authors Apollonio, Fabrizio I.; Gaiani, Marco; Corsi, Cristiana
year 2010
title A Semantic and Parametric Method for 3D Models used in 3D Cognitive-Information System
doi https://doi.org/10.52842/conf.ecaade.2010.863
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.863-872
wos WOS:000340629400092
summary The paper presents an innovative semantic and parametric method to build 3D models to be used in cognitive-information systems. We integrated structured geometrical and documentary information resulting from multiple sources with the aim to enhance the knowledge of those sites within the frame of their historical evolution and their institutional management in a 3D GIS/DB. The developed applications were designed for different types of users, with a largely scalable interface, able to support different output devices and to work at different levels of iconicity. The system allows a full comprehension of the buildings in their own context, permitting to discover unknown relationships, to evaluate their architectural occupancy and to quickly access a complex system of information.
keywords 3D-GIS; Semantic modeling; 3D reality-based modeling; Real-time rendering; Virtual heritage
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2010_320
id sigradi2010_320
authors Ariel, Moreira Alejandro
year 2010
title Modelos digitales de representación de lo real como estrategia de management alternativo en la práctica profesional arquitectónica [Digital models of representation of reality as an alternative management strategy in architectural practice]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 320-323
summary An architectural project is designed in weeks or months—sometimes in places far from the construction site—and is built in years. The challenge of design is more than creating a three - dimensional digital (3D) model that includes all available information; visualization and communication throughout the entire process is crucial due to the global nature of contemporary architectural practice. This study asks: What tool would satisfy this need for communication? The objective of this paper is to explore these issues and propose an answer to this query based on flexible management to solve them.
keywords technological integration, BIM, IPD, knowledge management, digital model of reality
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac20108401
id ijac20108401
authors Attar, Ramtin; Robert Aish, Jos Stam, et al.
year 2010
title Embedded Rationality: A Unified Simulation Framework for Interactive Form Finding
source International Journal of Architectural Computing vol. 8 - no. 4, p. 39
summary This paper describes embedded rationality as a method for implicitly combining fabrication constraints into an interactive framework for conceptual design. While the concept of ‘embedded rationality’ has been previously discussed in the context of a parametric design environment, we employ this concept to present a novel framework for dynamic simulation as a method for interactive form-finding. By identifying categories of computational characteristics, we present a unified physics-solver that generalizes existing simulations through a constraint-based approach. Through several examples we explore conceptual approaches to a fixed form where the resulting effects of interacting forces are produced in real-time. Finally, we provide an example of embedded rationality by examining a constraint-based model of fabrication rationale for a Planar Offset Quad (POQ) panelization system.
series journal
last changed 2019/05/24 09:55

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_316
id sigradi2010_316
authors Correa, Madrigal Ómar; Gutiérrez Julio Óscar; González Montoya Giraldo Andrés
year 2010
title Generador de entornos virtuales en tiempo real basado en capas [Generating real - time virtual environments based on layers]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 316-319
summary The generation of virtual environments in real time is presently a highly researched subject. It has great potential to reduce the development time of virtual reality products and to create very large environments with a wide variety of content. These benefits have become very popular in the development of video games and simulators. This work proposes a new generation system—a layer generator that incorporates the best features of such systems with real - time and new generation techniques. To the present, the layer generator has been applied to games, and may potentially be used with other systems.
keywords layer generation, real time, virtual environment, development
series SIGRADI
email
last changed 2016/03/10 09:49

_id ascaad2010_179
id ascaad2010_179
authors Jones, Charles; Kevin Sweet
year 2010
title Over Constrained
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 179-188
summary Parametric software has fundamentally changed the way in which architecture is conceptualized, developed and even constructed. The ability to assign parameters or numeric variables to specific portions of a project has allowed designers the potential to test variations of their design. Small changes to a single parameter can have an exponential effect on the designed object and alter its appearance beyond original preconceptions in both positive and negative ways. Parametric software also has the ability to constrain or restrict geometry to set values, parameters or conditions. This has the benefit of allowing portions of a form to remain constant or unchanged while simultaneously allowing for a great degree of flexibility in response to a design intent. Constraining portions of a design allows architects to respond to existing or unalterable conditions by ""locking down"" information within a project and then explore those portions that can change more freely. This programmed relationship between the parameter and the form, once established, can give the illusion of minimal effort for maximum output. The ease in which geometrical form can be altered and shaped by a single variable can mislead beginning designers into thinking that the software makes these relationships for them. What is hidden, is the programming or connections needed between the parameters and the geometry in order to produce such dramatic change. Finally, thinking parametrically about design reintroduces the concept of a rigorous, intent driven, fabrication oriented practice; a practice lost in a digital era where the novelty of new tools was sufficient to produce new form. Because parametric models must have established relationships to all parts of the design, each component must have a purpose, be well thought out, and have a direct relationship to a real world object. The introduction of parametric design methodologies into an architectural pedagogy reestablishes architectural praxis in an academic setting. Students are taught to design based on creating relationships to connected components; just as they would do in a professional architectural practice. This paper outlines how Digital Project – a parametric based software – was introduced into an academic setting in an attempt reconnect the ideologies of academia with the practicalities of professional practice. In order to take full advantage of Digital Project as a parameter based software, a project that creates modular, flexible geometries was devised. Produced over one semester, the project set out to find ways of controlling designed geometry through variable parameters that allowed the initial module to be instantiated or replicated into a wall condition: maintaining a unified whole of discrete components. This paper outlines this process, the results and how the outcomes demonstrates the parametric ideologies described above.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_104
id ecaade2010_104
authors Mark, Earl
year 2010
title Optimizing Solar Insolation in Transformable Fabric Architecture: A parametric search design process
doi https://doi.org/10.52842/conf.ecaade.2010.461
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.461-470
wos WOS:000340629400050
summary A design studio and a parallel research project focused on transformable fabric architecture. To facilitate a part of this work, computer based shape generation tools were used to optimize the placement of thin-film photovoltaic cells onto a transformable roof structure. In addition, the tension membrane fabric is rigged in a way that is similar to a sailing boat. The fabric is set into position by winches and cables. The winches are hand-operated so as to lower the overall energy cost. The initial computer models proceeded concurrently with the mockup of small-scale physical prototypes. In addition, the author used an open source programming language to implement a particle spring real time simulation of the fabric shapes. The simulation included a three-dimensional graphical representation of solar insolation and helped to further determine the physical geometry of the project. One of the goals was to evaluate whether larger transformations to the structure as a whole or smaller movements in the fabric would help to optimize the solar insolation benefits. As the examination of potential forms narrowed down to classical saddle shapes, the practical details of rigging the fabric imposed further limitations on its transformable nature. This paper is focused on how modeling with ad hoc tools and especially real-time computer simulation influenced the direction of the work.
keywords Transformable fabric architecture; Parametric design; Thin-film photovoltaic cells; Animation; Simulation
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2010_366
id sigradi2010_366
authors Payssé, Álvarez Marcelo; Latorre Andrés Pedro M; Serón Arbeloa Francisco
year 2010
title Reconstrucción virtual de la Calera de las Huérfanas [Virtual reconstruction of La Calera de las Huérfanas]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 366-369
summary The composition of multiple layers of digital information into a real - world scene in real time (known as augmented reality or AR) opens the door to an immense range of possibilities in almost every field of human activity from medicine to art, engineering to education. Our project aims to present the general public with the history and details of an archaeological site: The Estancia Jesuítica de Belén, also known as the Calera de las Huérfanas in Colonia, Uruguay, as it was around the year 1790.
keywords virtual reconstruction; digital heritage; immersive environments
series SIGRADI
email
last changed 2016/03/10 09:57

_id ecaade2010_023
id ecaade2010_023
authors Rafi, Ahmad; Salleh, Azhar; Paul, Avijit; Maulana, Reza; Athar, Faisal; Pratiniyata, Gatya
year 2010
title e-Warisan SENIBINA: Towards a collaborative architectural virtual heritage experience
doi https://doi.org/10.52842/conf.ecaade.2010.739
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.739-746
wos WOS:000340629400079
summary This research introduces the concepts of virtual heritage in the field of architecture. It then continues with the fundamentals of virtual heritage (VH) metadata structure adopted from the UNESCO guidelines. The key highlights to the content of e-Warisan SENIBINA will be demonstrated via techniques to reconstruct heritage buildings towards a collaborative architectural virtual heritage experience as closely to originally design features. The virtual reconstruction will be based on the techniques suggested by the research team tested earlier in a smaller scale of advanced lighting technique for virtual heritage representations. This research will suggest (1) content preparation for creating collaborative architectural heritage, (2) effective low-polygon modelling solutions that incorporate global illumination (GI) lighting for real-time simulation and (3) texturing techniques to accommodate reasonable detailing and give the essence of the VH.
keywords Simulation; Virtual heritage; Virtual reality; Collaborative environment; Realistic lighting
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_968633 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002