CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 91

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
doi https://doi.org/10.52842/conf.caadria.2013.209
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
wos WOS:000351496100021
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_392
id sigradi2010_392
authors Papanikolaou, Dimitris
year 2010
title Understanding Behavior of Self - Organizing Vehicle Sharing Systems
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 392-395
summary Mobility on Demand (MoD) is a self - organizing one - way vehicle sharing system that allows users to pick - up from and drop - off to at station. MoD uses sensors to understand fleet distribution asymmetry and price incentives to motivate users to drive vehicles to stations that need the them most thereby increasing service performance. This paper presents current work done at the Smart Cities group of the MIT Media Lab for understanding decision - making in dynamically priced vehicle sharing systems, and exploring the circumstances under which such systems can become stable, sustainable, and profitable.
keywords vehicle - sharing, mobility on demand, dynamic pricing, system dynamics, self - organization
series SIGRADI
email
last changed 2016/03/10 09:57

_id caadria2010_010
id caadria2010_010
authors Tan, Beng-Kiang and Stephen Lim Tsung Yee
year 2010
title Place and placelessness in 3D online virtual world
doi https://doi.org/10.52842/conf.caadria.2010.103
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 103-112
summary This paper examines the issue of place-making in 3D virtual world from the design point of view. It aims to find out what are the elements to create a sense of place. As Second Life currently has the largest users among 3D virtual worlds, it is selected as a study case. The methodology consists of theoretical studies and ethnographic observation. Firstly, literature review of theories regarding place-making in the physical world and the virtual world were done. From that a framework was formulated as a common basis for ethnographic observations and interviews at three real world public spaces and four locations in Second Life. This paper presents findings from the latter. The focus areas are physical settings, activities and experience of users. The observations are discussed and criteria for place-making in multiuser 3D online virtual environments are proposed. This paper will contribute to the understanding of how to design a place rather than space in 3D online virtual world.
keywords 3D virtual world; Second Life; place-making; multiuser online virtual environment
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2010_044
id caadria2010_044
authors Tsai, Tai-Ling; Tay-Sheng Jeng and Jian-Hsu Chen
year 2010
title Spiritual ambiance in interactive temple
doi https://doi.org/10.52842/conf.caadria.2010.467
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 467-476
summary This paper introduces a new dimension of spiritual ambiance design using a real-world interactive temple design project. The research focus has shifted from users’ basic demands for physical design artifacts to the spiritual demands through embodied interaction. Thus, this study aims at enhancing the spiritual reflection in temple design through ambient media in interactive space. The objective of designing spiritual ambiance in temple is to develop a medium for taking the believers into religious contemplation and enhancing understanding of spirit of Bodhisattva Guan Yin. This research develops the design process of interactive space design with spiritual ambiance. Through the three design levels of emotional design principles, the design conceptual model of spiritual ambiance triggers resonances through metaphor association. To verify the conceptual model, the design concept is implemented in the physical space via human-centered embodied interaction. The on-site project not only introduces advanced sensing technology embedded into the temple but also verifies the applicability of human–computer interaction to a new dimension of spiritual ambiance design
keywords Human–computer interaction; ubiquitous computing; interactive space; spiritual ambiance
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2010_117
id ascaad2010_117
authors El Gewely, Maha H.
year 2010
title Algorithm Aided Architectural Design (Aaad)
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 117-126
summary Algorithm Aided Architectural Design (AAAD) is considered a second paradigm shift in the Architectural design process after the first one of bridging the conventional design process to the digital realm of design. This paper is divided into two parts, the first part comprehends the Algorithmic Architecture approach of from the point of view of tools, techniques, theories and practice in order to find the Algotecture theories on the map of Digital Architecture. Then, the paper exemplifies an application on Algorithmic Architecture. FALLINGWATER TOOLBOX VERSION 1.0 is a computational design demo tool for architects to aid in the house schematic design phase according to an analytical study of Frank Lloyd Wright's basic design rules and spatial program of his masterpiece; FallingWater House, (Edgar J. Kaufmann family house 1939). These rules have been transferred to algorithms and code thereafter. At a preceding stage, the Graphical User Interface (GUI) was developed using MAXScript 9.0. Using the FALLINGWATER TOOLBOX, infinite number of house prototypes can be generated within few minutes. Although, the FWT is based on a hypothetical design problem of producing prototype alternatives for a new house with the same identity of the Edgar Kaufmann House, the concept of the tool can be applied on a wider range of problems. It may help generating prototype alternative solutions for residential compounds design according to the required constraints.
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2010_016
id caadria2010_016
authors Ji, Guohua and Huijie Liu
year 2010
title Automatic planning of residential quarter under insolation condition based on multi-agent simulation
doi https://doi.org/10.52842/conf.caadria.2010.165
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 165-174
summary Based on Multi-Agent Simulation principle, this study establishes an automatic layout model for planning residential buildings under the constraint of insolation condition, programmed with NetLogo. According to the residential planning regulations, our model respectively deals with two kinds of constraint -sunshine spacing and sunshine duration.
keywords Residential planning; multi-agent simulation; NetLogo; sunshine spacing; sunshine duration
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2010_092
id ecaade2010_092
authors Zhang, Ji; Heng, Chye Kiang; Hii, Daniel Jun Chung; Janssen, Patrick; Malone-Lee, Lai Choo; Tan, Beng Kiang
year 2010
title Evaluating the Environmental Implications of Density: A comparative case study on the relationship between density, urban block typology and sky view factor performance
doi https://doi.org/10.52842/conf.ecaade.2010.515
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.515-527
summary This study explores the relationship between density, built form typologies and their respective environmental quality in terms of Sky View Factor (SVF) distribution on both the facade and ground levels by examining representative residential precincts and urban street blocks. The findings demonstrate that the performances in terms of facade and ground level SVF distribution vary across cases under study. The differences in the variations of their SVF performances as a result of the increase of density suggest that alternative urban block typologies can be explored, when targeting at higher density development, that provide different spatial configurations and an equally good or better SVF performance than that of some of the existing urban block and precinct typologies.
wos WOS:000340629400056
keywords Density; Urban street block; Precinct; Typology; Sky view factor; Environmental performance
series eCAADe
email
last changed 2022/06/07 07:57

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id sigradi2010_244
id sigradi2010_244
authors Bunster, Victor
year 2010
title Between Thermal Efficiency and Formal Expression: Tropism as a Method for Layering Control in Generative Design
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 244-247
summary The definition of architectonic features often requires negotiation between diverse classes of design conditions merging in particular elements. The use of encompassing concepts opens possible approaches for layering control between these assorted factors. This study presents a method for the implementation of tropism as a conceptual gathering procedure in social housing windows definition, aiming to enhance the relationship between building and context in terms of spatial comfort and formal expression.
keywords tropism, generative architecture, diffusion limited aggregation, rhetorical structure theory, social housing
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2010_221
id ascaad2010_221
authors Caramelo Gomes, Cristina
year 2010
title Humanising ICT to a Smarter Dwelling Environment
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 221-230
summary Dwelling environment is not intelligent if it does not include the concept of home. The emergence of ICT allowed new functions as well as new ways of performing the traditional ones. The need to be online does not remove the need of privacy and to print the site. New ways of living require rethinking dwelling typology to flexibility. Intelligent environments will appear to elevate the sense of home, where security, autonomy, independence, comfort and interaction will be crucial to promote a more qualified life. Technological solutions can be driven in different directions: energy efficiency; lightening and temperature control, video surveillance, access control, etc., assistive environments; entertainment solutions like home theater and professional ones; all have in common to conceive the environment that matches user’s expectancies, where human interaction and social participation emerge as crucial requirements.
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2010_281
id sigradi2010_281
authors Granero, Adriana Edith; Garcia Alvarado Rodrigo
year 2010
title Flujo energético en las etapas tempranas del proceso de diseño arquitectónico y la importancia de generar aprendizajes significativos [Energy flow in early stages of architectural design process, and the importance of creating meaningful learning]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 281-284
summary This proposal seeks to stimulate energy conceptualization in the early stages of architectural design through the visualization of energy conditions as a dialogue in initial design configurations that is based on the integration of two software tools to facilitate meaningful learning. Students today have analytical intelligence that they have acquired through teaching themselves, and this has developed their creativity and their experiential - contextual practice; this permits effective interpretation of symbolic cognition. Digital tools of building, information modeling, and energy analysis can be related to specific features that promote this integrated design learning.
keywords KEY WORDS: performance views, building information modeling, visual and thermal comfort, integrated design learning, efficiency andoptimization.
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadiaregional2011_019
id acadiaregional2011_019
authors Peters, Troy
year 2011
title Simulation by Design: A Parametric Design Tool for Zero Energy Buildings
doi https://doi.org/10.52842/conf.acadia.2011.x.q2q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary To address the shortcomings of integrating building simulation in architectural design and to make it more appealing to students, a simple interface to Energyplus was created. This interface models a simple rectangular building that is passively heated by direct gain and cooled by ventilation. A simple photovoltaic interface has also been added to supply fan energy. This tool has an OpenGL modeler for visualization and uses Energyplus for calculations. The interface will run a full year simulation and graph the results. The results are reported in a yearly graph that shows the outdoor and indoor temperature. The indoor temperature range is based on adaptive comfort level. The interface was tested and used in an introductory design studio in order to comply with the 2010 imperative. The students simulated a simple box and changed the buildings parameters until the building fell within the adaptive comfort zone for most of the year. The climate simulated was Chicago, IL. Using these parameters the students then designed the building. The resulting designs show that even though the students were restricted in parameters, such as window percentage, they were still able to creatively design unique buildings that use zero to negative net energy for heating and cooling in a climate such as Chicago.
series ACADIA
last changed 2022/06/07 07:49

_id ascaad2010_231
id ascaad2010_231
authors Turrin, M.; R. Stouffs and S. Sariyildiz
year 2010
title Parametric Design of the Vela Roof
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 231-240
summary Due to the increased request for representative structures and for spaces to be used independent of the weather conditions, contemporary cities increasingly integrate public covered spaces (shadowed squares and streets, courtyards, historic commercial galleries, etc.) in the urban fibre. Facing the design of large roof structures for semi outdoor spaces is increasingly common for architects and engineers. When focusing on large roofs, aesthetics, structural performance and economics often dominate the design process. However, the current increased emphasis on energy-related aspects generates new challenges. Particularly, the use of renewable energy resources needs to be confronted. In this paper we will address the subject through a case study whose design aimed at integrating performance evaluations in the very early stages of the process. The case study focuses on the so-called “Vela roof”. This roof is part of a larger project currently under construction in Bologna (Italy). The focus of the study concerns the use of on-site renewable climate (energy) resources with special attention given passive reduction of summer overheating and daylight. For these tasks a parametric model was developed to support the decision making process and the paper will present its potential with respect to performance-oriented design during the conceptual design phase of roof structure. The very first conceptual design developed by the architectural office was assumed as a starting point for the inclusion of performance criteria. In the preliminary design of the roof uncomfortable conditions were expected under the whole roof in the summer. Various strategies for improving the thermal comfort were investigated, involving a large set of combined systems. Not all of these will be detailed in this paper. Instead we will focus on the ones directly affected by the geometry of the roof. Those are mainly air flow for cooling and the reduction of solar gain, in combination with their effects on daylight. Their investigation was based on a chain of dependencies to be integrated in the design process. With respect to that, parametric modelling was used. Parametric modelling allows both geometrical entities and their relationships to be represented. These relationships are structured in a hierarchical chain of dependencies, established during the preliminary parameterization process. The independent properties of the model are usually expressed through independent parameters, and their variations generate different configurations of the model. By making use of this potential, three project scales were parametrically explored. At the large scale, parametric variations of the overall shape of the roof were investigated in relation to cooling through ventilation and here the parametric model allowed for the generation of both different configurations of the roof, including its structural morphology and variations of its structural tessellation. At the medium scale, the integration of openable modules was investigated in relation to air extraction for cooling; with respect to this, the parametric model allows exploring openings based on variations of size and distribution. At the small scale, various options were explored for the cladding system, in order to reduce the direct solar gain while still allowing the income of indirect natural light. The parametric model was used to investigate the configuration of self-shading modules and their integration in the structure. Specific emphasis will be given to the small scale. The advantages in design process and the current limits of the parametric modelling approach used here will be discussed in the paper.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_181
id ecaade2010_181
authors Turrin, Michela; von Buelow, Peter; Stouffs, Rudi; Kilian, Axel
year 2010
title Performance-Oriented Design of Large Passive Solar Roofs: A method for the integration of parametric modelling and genetic algorithms
doi https://doi.org/10.52842/conf.ecaade.2010.321
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.321-330
summary The paper addresses the design of large roof structures for semi outdoor spaces through an investigation of a type of performance-oriented design, which aims at integrating performance evaluations in the early stages of the design process. Particularly, aiming at improving daylight and thermal comfort under large structures, the paper focuses on the exploration of passive solar strategies to reduce the need for imported energies. Referring to this context, the potential of parametric modeling is investigated with respect to performance-oriented design and a method, denoted ParaGen, is presented, based on the integration of parametric modeling and genetic algorithms. The potentials of the method are shown by discussing a case study, the roof SolSt. The design process of SolSt is based on parametric variations of its curvature, the density of its modules and the geometry of its cladding and explored based on the daylight and solar exposure of the covered spaces.
wos WOS:000340629400034
keywords Performance-oriented design; Parametric modeling; Genetic algorithms; Passive solar strategies; Large roofs
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia10_125
id acadia10_125
authors Andersen, Paul; Salomon, David
year 2010
title The Pattern That Connects
doi https://doi.org/10.52842/conf.acadia.2010.125
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 125-132
summary While patterns have a spotty history in architecture, their definitions and uses in other fields offer new possibilities for design. This paper examines those definitions and uses—including theories put forward by architectural theorist, Christopher Alexander; art educator, Gyorgy Kepes; chemist, Ilya Prigogine; and anthropologist, Gregory Bateson. Of particular interest is the shift from eternal, essential, universal, and fundamental patterns to fleeting, superficial, specific, and incidental versions. While endemic to many contemporary architectural practices, this multifaceted view of patterns was anticipated by Bateson, who saw them as agents of evolution and learning. His desire to combine redundancy and noise offers architects new ways to understand patterns and use them to link form and information, matter and thought.
keywords pattern, Bateson, evolution, noise, redundancy, feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2010_124
id ecaade2010_124
authors Ben Rajeb, Samia; Lecourtois, Caroline; Gue_na, Franc_ois
year 2010
title Operations of Conception in Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2010.687
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.687-695
summary This paper presents an ongoing research on computer supported collaborative design carried out by the ARIAM-LAREA laboratory at the Superior National School of Architecture of Paris-LaVillette. The aim of this research is to analyze computer mediated architectural design practices in order to identify the specific “operations of conception”. Two observations of architectural collaborative design supported by computer tool called “Studio Digital Collaboratif” have been conducted: one concerning collaboration between architects, in laboratory, the other one between architects and engineers in a real situation of design. Our analysis use two concepts to explain the collaborative conception in architecture: classes of operation of conception and operation of conception. They permit to identify the elementary operations of conception and pragmatic operations of collaboration. According to the first results it seems that classes of operation of conception are shared but operations of conception seem to be unshared.
wos WOS:000340629400074
keywords Collaborative design; Architecture; Cognitive operations of conception; Architecturology; CAD
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_314620 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002