CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 97

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
wos WOS:000330322400034
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac20108303
id ijac20108303
authors Rafael, Urquiza S.
year 2010
title Parametric Performative Systems: Designing a Bioclimatic Responsive Skin
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 279-300
summary This paper assumes the façade as an innovative element of interaction between the inside and the outside: the architectural skin. As in nature, one of its most significant functions is the energy exchange with the environment. Similarly, efficiency increases by passive and active responses to climate conditions and site orientation. This research explores the potential of parametric techniques, programming and digital manufacturing, to design and build a Bioclimatic Responsive Skin (BRS). Firstly, we designed a bio-component applicable to any surface due to its parametric nature. Secondly, we fabricated two non-reactive working prototypes to study the manufacturing and construction details. Thirdly, we integrated the physical and the digital interfaces by using Generative Components™, Arduino, and Ubimash to generate a kinetic responsive model. This prototype was presented at SmartGeometry Workshop and Conference 2010. Finally, Lem3a architecture used this BRS in a real design project for a Sustainable house in New Hope, PA.
series journal
last changed 2019/05/24 09:55

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_407
id sigradi2010_407
authors Franco, Lizarazo Fernando Enrique; Aguirre Ramos Javier Adolfo
year 2010
title Distancias: instalación interactiva en el espacio público basada en el uso de dispositivos móviles [Distances: interactive installation in public space, using mobile devices]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 407-410
summary The purpose of this paper is to present the results of research conducted at the ICESI University in Colombia, which was aimed at designing a method of collaborative interaction between individuals in public spaces using mobile devices to express themselves, encounter others, and reflect on public spaces. The result is the design of a prototype—an interactive installation that projects the information sent from cell phones via Bluetooth and text messaging. This content can be transformed by users through a distance sensor.
keywords interactive; public space; collaborative; mobile devices; art
series SIGRADI
email
last changed 2016/03/10 09:52

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
doi https://doi.org/10.52842/conf.acadia.2011.372
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id caadria2010_007
id caadria2010_007
authors Kwee, V.
year 2010
title A future through an architectural past? Designing an online information package for Al Jahili Fort
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 73-82
doi https://doi.org/10.52842/conf.caadria.2010.073
summary This paper details the process that students of UAE University’s Department of Architectural Engineering have undergone in packaging architectural heritage data online. Facilitated by the Abu Dhabi Authority for Cultural Heritage, students were introduced to historical data. They digitally reconstructed a historical fort in Al Ain, UAE – Al Jahili Fort – and investigated methods of packaging the gathered information online. Some observations and assessments (strengths and weaknesses) pertaining to the unique historical information packaging are highlighted in this paper. In addition to acquiring skills in producing architectural abstractions and graphic composition, students assessed several online interactive techniques. A set of rules or patterns were prescribed to enhance the clarity of chosen data. While providing insights to the processes of and considerations in designing an online information package for an architectural heritage project, the underlying objective is to question the possibilities and role necessary in sculpting the future of CAAD education to propel the discipline forward through the medium. What would be the implications? It also asserts the notion that digital space may be architectural education’s imminent next ‘final’ frontier.
keywords CAAD Education; Information Packaging; Architectural Heritage; Online Presentation
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2010_150
id sigradi2010_150
authors Ribeiro, Clarissa; La Rocca Renata; Lautenschlaeger Graziele
year 2010
title Instants of Metamorphosis: An Interactive Video Installation
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 150-152
summary Instants of Metamorphosis 01 is an interactive video installation that is the first emergence of a process - based collective work by the Double Collective. Using a methodology - based on systemic measures of complexity and organization, the work is being documented and analyzed by focusing on the connections, the dialogue between the elements, and the emergences. The methodological parameters contribute to the conceiving and designing of the installation in a performative and process - based collective way, focusing the role of the audience in mixing the virtual and the material dimensions as part of a delicate network dialogue that happens between, through and beyond this dimension, allowing the subject to became a trans – actor.
keywords complex adaptive systems, interactive digital art installations, storied spaces, mnemonic
series SIGRADI
email
last changed 2016/03/10 09:58

_id ecaade2010_110
id ecaade2010_110
authors Santo, Yasu; Frazer, John Hamilton; Drogemuller, Robin
year 2010
title Co-Adaptive Environments: Investigation into computer and network enhanced adaptable, sustainable and participatory environments
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.677-686
doi https://doi.org/10.52842/conf.ecaade.2010.677
wos WOS:000340629400073
summary This paper presents research in response to environmental concerns we face today. In a search for a better method to manage spaces and building resources consumed excessively through traditional top-down architectural solutions, the research began by speculating that the building spaces and resources can be managed by designing architectural systems that encourage a bottom-up approach. In other words, this research investigates how to design systems that encourage occupants and users of buildings to actively understand, manage and customise their own spaces. Specific attention is paid to the participation of building users because no matter how sophisticated the system is, the building will become as wasteful as conventional buildings if users cannot, or do not want to, utilise the system effectively. The research is still in its early stages. The intension of this paper is to provide a background to the issue, discuss researches and projects relevant to, but not necessarily about, architecture, and introduce a number of hypothesis and investigations to realise adaptable, participatory and sustainable environments for users.
keywords Adaptive; Interactive; Participatory; Tangible; Ubiquitous
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2010_066
id ecaade2010_066
authors Shin, Dongyoun; Seibert, Thomas; Walz, Steffen P.; Choe, Yoon; Kim, Sung Ah
year 2010
title Energy Monitoring and Visualization System for U-ECO City: Designing a spatial information model for energy monitoring in the context of large amount data management on a web based platform
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.583-591
doi https://doi.org/10.52842/conf.ecaade.2010.583
wos WOS:000340629400063
summary U-Eco City is a research and development project initiated by the Korean government. The project’s objective is the monitoring and visualization of aggregated and real time states of various energy usages represented by location-based sensor data accrued from city to building scale. The platform’s middleware will retrieve geospatial data from a GIS database and sensor data from the individual sensory installed over the city and provide the browserbased client with the accommodated information suitable to display geolocation characteristics specific to the respective energy usage. The client will be capable of processing and displaying real time and aggregated data in different dimensions such as time, location, level of detail, mode of visualization, etc. Ultimately, this system will induce a citizen’s participation with the notion of energy saving, and be utilized as an interactive energy management system from a citizen to authorities responsible for designing or developing city infrastructure. The platform’s middleware has been developed into an operative, advanced prototype, alongside a Web-based client integrates and interfaces with the Google Earth and Google Maps plug-ins for geospatially referenced energy usage visualization and monitoring.
keywords Energy Monitoring; Data visualization; Ueco-City; Spacial information model; UIES
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2010_044
id caadria2010_044
authors Tsai, Tai-Ling; Tay-Sheng Jeng and Jian-Hsu Chen
year 2010
title Spiritual ambiance in interactive temple
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2010.467
summary This paper introduces a new dimension of spiritual ambiance design using a real-world interactive temple design project. The research focus has shifted from users’ basic demands for physical design artifacts to the spiritual demands through embodied interaction. Thus, this study aims at enhancing the spiritual reflection in temple design through ambient media in interactive space. The objective of designing spiritual ambiance in temple is to develop a medium for taking the believers into religious contemplation and enhancing understanding of spirit of Bodhisattva Guan Yin. This research develops the design process of interactive space design with spiritual ambiance. Through the three design levels of emotional design principles, the design conceptual model of spiritual ambiance triggers resonances through metaphor association. To verify the conceptual model, the design concept is implemented in the physical space via human-centered embodied interaction. The on-site project not only introduces advanced sensing technology embedded into the temple but also verifies the applicability of human–computer interaction to a new dimension of spiritual ambiance design
keywords Human–computer interaction; ubiquitous computing; interactive space; spiritual ambiance
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2010_057
id caadria2010_057
authors Feng, Han
year 2010
title Quantum architecture: an indeterministic and interactive computational design system
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 619-628
doi https://doi.org/10.52842/conf.caadria.2010.619
summary The evolution of computational design technique from mere substitution of hand drawing to customised design algorithms exhibiting a certain degree of intelligence, naturally opens up a new research frontier that studies the relationship between designers and customized design algorithms. Most of current customised architecture design algorithm adopts a deterministic paradigm to raise their design questions, that is to say, given the explicit rules and parameters, only one solution is allowed at each discrete computation step. Due to this deterministic nature, an intuitive and efficient communication between design algorithm and designer is hard to achieve, as there is almost no space for designer to step into the running generative process. This lack of progressive communication channels and the inefficiency of translating perceptual judgment into computer language directly results in the unconscious rejection of non-parameterisable design factors like intuition, aesthetic judgment and associational reasoning that are essential to any design activity. This paper introduces the quantum design paradigm as alternative computation paradigm for constructing an interactive and intuitive design system. An algorithm prototype, probability field, will be introduced to illustrate the logic and possible application of the proposed quantum design paradigm.
keywords Quantum design paradigm; intuition; algorithm prototype; interactivity; probability fi eld
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
doi https://doi.org/10.52842/conf.acadia.2011.186
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_078
id ecaade2010_078
authors Chiu, Yun-Ying
year 2010
title How To Make The Soft Skin?: A preliminary framework for the parametric design of the bionic soft skin
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.237-242
doi https://doi.org/10.52842/conf.ecaade.2010.237
wos WOS:000340629400025
summary This paper is a presentation of the preliminary framework for the design and fabrication of the soft-skin. Today, the digital technology applied in the architecture field is everywhere. However, there are still lots of fantastic free form architecture uncompleted and remained on the paper architecture or only the digital visual simulated model. Until now, most of the finished free form cases are consisted of the skin and bones, or only the bones. The complete soft-skin cases without the bones are fewer and the process remains untold. Based on the parametric environments and biology, how might you design a free form without the bones? How could you make the soft skin stand up? The research starts a series of exploration of the design and fabrication for the soft skin, and seeks to propose the preliminary framework as a helpful reference for the designers who deal with the soft skin project.
keywords Soft skin; Bionic architecture; Parametric design; Grasshopper
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_211
id acadia10_211
authors Crawford, Scott
year 2010
title A Breathing Building Skin
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 211-217
doi https://doi.org/10.52842/conf.acadia.2010.211
summary This paper details an initial exploration into the development of a breathing building skin. This research proposes a system of diaphragms as an alternative to the use of fans for distributing volumes of air. The driving concepts for this project are the three types of evolutionary adaptation: flexibility, acclimation, and learning. Of particular interest is how these biological concepts relate to architectural design. Parametric modeling was used throughout the project to study a family of folding geometry. This allowed for the iterative development of a complex part that is capable of being manufactured from a single sheet of material. Preliminary calculations point to this system being several times more energy efficient than a fan at moving a given volume of air per Watt of electricity. This research is significant as it puts forth a potentially energy efficient and highly integrated alternative to fans, while also illustrating a way of relating biological concepts of adaptation to architectural design.
keywords adaptation, responsive, kinetic, ventilation, space frame, parametric
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2010_189
id sigradi2010_189
authors Hernández, Silvia Patricia; Verón María José; Figeroa Luciana Lanzone; Alejandra Rezk
year 2010
title Arquitectura que aparece - desaparece: experiencia de diseño [Architecture tha appears and dissapear: an experience in design]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 189-192
summary We present this paper as a proposal for a preliminary design prototype for urban architecture based on the concept of versatility, that is, spaces that can be easily changed, either on the effects level (i.e. illumination, projection), or on the mechanical level (i.e. skin movement). These spaces can be transformed by changing their proportions, limits and assistance. This versatility is provided by domotics, and is verified in 3D graphics and animations. The proposal uses a domotic system as the central control for illumination, environment outfitting, skin movements, security systems, and multimedia.
keywords versatility, domotics, animation, movable skins
series SIGRADI
email
last changed 2016/03/10 09:53

_id 4d7d
id 4d7d
authors Marionyt Tyrone Marshall
year 2010
title HYGROSCOPIC CLIMATIC MODULATED BOUNDARIES: A Strategy for Differentiated Performance Using a Natural Circulative and Energy Captive Building Envelope in Hot and Moisture Rich Laden Air Environments
source Perkins+Will Research Journal, Vol 02.01, 41-53
summary The operation and construction of buildings account for almost half of the energy use in the United States. To meet global climate change targets, energy consumption of buildings in the long term must be reduced as well as carbon dioxide emissions. This article explores a theoretical building envelope that generates energy and produces water by drawing water vapor out of the air to deliver new sources of water; it lowers indoor humidity in hot and humid climates. The design in this model considers materiality, surface area and environmental conditions to influence build- ing form. The case in this article considers materials and systems application in the design of the building envelope. The hygroscopic building envelope design strategically senses varying conditions of concentration and density of moisture laden air to provide visual indications of its performance. It is a building skin that emulates biological processes by creating pressure differences and transferring energy in various forms.
keywords biomimetics, building envelope, building façade, computational design, computational control, humidity, hygroscopic, renewable resources
series journal paper
type normal paper
email
more http://www.perkinswill.com/research/research-journal-vol.-02.01.html
last changed 2010/10/31 02:39

_id acadia10_243
id acadia10_243
authors Pasold, Anke; Foged, Isak Worre
year 2010
title Performative Responsive Architecture Powered by Climate
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 243-249
doi https://doi.org/10.52842/conf.acadia.2010.243
summary This paper is to link the thermonastic behavior found in flower heads in nature with the material research into bimetallic :abstract strips. This is to advance the discussion of environmental responsive systems on the basis of thermal properties for advanced environmental studies within the field of architecture in general and in form of a responsive building skin in particular.
keywords Environmental response, Material properties, Embedded Informaiton flo
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
doi https://doi.org/10.52842/conf.acadia.2010.263
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2010_183
id ecaade2010_183
authors Bourdakis, Vassilis
year 2010
title Designing Interactions: A step forward from time based media and synthetic space design in architectural education
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.151-156
doi https://doi.org/10.52842/conf.ecaade.2010.151
wos WOS:000340629400016
summary The paper follows the development of digital tools for architects and briefly discusses their utility within education and practice. The move from static CAD tools to time based media followed by programmatic processes and virtual environment design is addressing the evolution of the profession and to an extent reflects practitioners’ needs. The paper focuses on the notion of interactivity and how it is been addressed in various fields. Borrowing from computer science and game design the author presents a course dealing with designing interactivity, responsiveness and users feeding their input back in the design. The aim of the paper is to analyse and support a new set of tools in architectural curricula that will implement interactivity and integrate it into spatial design leading to a holistic approach promoting intelligence, hybridity and responsiveness of the built environment. Following, the elaboration of the rationale, a brief discussion on tools and project directions is carried out.
keywords Interaction; Virtual environments; Time based media; Curriculum; Intelligent environments
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_288595 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002