CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 446

_id ecaade2012_266
id ecaade2012_266
authors Casucci, Tommaso ; Erioli, Alessio
year 2012
title Behavioural Surfaces: Project for the Architecture Faculty library in Florence
doi https://doi.org/10.52842/conf.ecaade.2012.1.339
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 339-345
summary Behavioural Surfaces is a thesis project in Architecture discussed on December 2010 at the University of Florence. The project explores the surfacespace relationship in which a surface condition, generated from intensive datascapes derived from environmental data, is able to produce spatial differentiation and modulate structural and environmental preformance. Exploiting material self-organization in sea sponges as surfaces that deploy function and performance through curvature modulation and space defi nition, two different surface definition processes were explored to organize the system hierarchy and its performances at two different scales. At the macroscale, the global shape of the building is shaped on the base of isopotential surfaces while at a more detailed level the multi-performance skin system is defi ned upon the triply periodic minimal surfaces (TPMS).
wos WOS:000330322400034
keywords Digital datascape; Isosurfaces; Material intelligence; Minimal sufaces
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
doi https://doi.org/10.52842/conf.acadia.2011.186
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_199
id ecaade2010_199
authors Deng, Xiaofan; Ma, Haidong
year 2010
title Macro Thinking & Micro Action: A digital simulation example for the southern part of Beijing, China
doi https://doi.org/10.52842/conf.ecaade.2010.529
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.529-537
summary This paper aims to discuss alternative and innovative plan models for Chinese cities that are currently under rapid development. Our study considers Complexity Theories of Cities as theoretical base and applies a holistic approach in city planning by recognizing the complex nature of city. We strive to integrate the diverse local structure in social and spatial aspects with the ambition and demands of city’s expansion. Digital sequence simulation is used as an innovative tool to represent local activities, promote interventions and predict possible self-organization process in the future. The study arrives at an open scenario the feasible prospect. A conclusion is drawn to reflect the process, achievement and weakness of the research.
wos WOS:000340629400057
keywords Local diversity; Living pattern; Industrial parameterization; Infrastructural parameterization; Sequence simulation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2010_063
id ecaade2010_063
authors Gourdoukis, Dimitris
year 2010
title Protocol Growth: Development of adaptable city models through self-organization
doi https://doi.org/10.52842/conf.ecaade.2010.605
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.605-614
summary Protocol Growth attempts to approach the process of design in an alternative, bottom-up fashion, that is not based on master planning but instead on the development of a protocol that would allow infrastructure to ‘selforganize’, adapting at the same time to the conditions that it encounters. First, the concept of the protocol is explained and positioned in its historical context in order to better understand the needs that it satisfies. Then the characteristics of such an approach are illustrated through the example of a structure that aims to the development of a system that would allow for a settlement to face the rising of the water level because of global warming. The model proposed, instead of following a ‘long term’ plan adapts itself to the situation that it encounters and grows in height following an algorithm designed for that reason.
wos WOS:000340629400065
keywords City growth; Protocol; Self-organization; Computation; Cellular automata
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia10_183
id acadia10_183
authors Ireland, Tim
year 2010
title Stigmergic Planning
doi https://doi.org/10.52842/conf.acadia.2010.183
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 183-189
summary This paper presents an application of swarm intelligence towards the problem of spatial configuration. The methodology classifies activities as discrete entities, which self-organise topologically through associational parameters: an investigation of emergent route formation and spatial connectivity based on simple agent and pheromone interaction, coupled with the problem of ‘loose’ rectangular geometric assembly. A concept model sniffingSpace (Ireland, 2009) developed in Netlogo (Willensky, 1999), which established the self-organising topological capacity of the system, is extended in Processing (Fry & Rea, 2009) to incorporate rectangular geometry towards the problem of planning architectural space.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id caadria2010_032
id caadria2010_032
authors Karakiewicz, Justyna and Thomas Kvan
year 2010
title Diagrams as parametric systems in urban design: parametric systems applied to conceptual design
doi https://doi.org/10.52842/conf.caadria.2010.337
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 337-346
summary The paper describes how parametric systems have been used to help students bridge from conceptual design to descriptive results. Specifically, it describes projects set in two cities, Hong Kong and Melbourne, to address substantive urban design issues and illustrate that the approach is not scale or culturally bounded. The project undertaken in Hong Kong establishes interdependency models for dense urban structure and examined urban systems that contribute positively to their contextual setting. Parametric models were used to develop diagrams of site potential through models of air movement, light and sun exposure, in particular addressing air quality in one of the most polluted places in Hong Kong. The Melbourne case studies examine urban systems as self-organising systems. In these, the case studies identify parameters that determine two patterns: material pattern of the city and cognitive pattern of the city. The paper illustrates the use of a parametric system as a diagramming tool to explore urban propositions from an urban system.
keywords Urbanism; systems thinking; parametric; diagrams
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2010_099
id ecaade2010_099
authors Koch, Volker; Abraham, Willy; Selbmann, Sebastian; Kindsvater, Andreas; von Both, Petra
year 2010
title One Mill per Student: Designing a low cost prototype mill for architectural use
doi https://doi.org/10.52842/conf.ecaade.2010.429
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.429-436
summary The linking of planning and production is today of crucial importance in architectural planning processes. Though the teaching of techniques and methods of rapid prototyping in universities is not up to date, since the needed machinery is too expensive and the students’ direct and perpetual access to a sufficient number of systems cannot be granted. This paper describes a teaching project where architectural students tried to plan, build and test a 3-axes mill for themselves and their fellow students. It further describes the motivation and realization of the class and the possibility to integrate self-made and low cost milling machines in the education of architecture students.
wos WOS:000340629400046
keywords Rapid prototyping; Computer aided manufacturing; CAD-CAM
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_222
id ecaade2010_222
authors Matcha, Heike; Ljubas, Ante
year 2010
title Parametric Origami: Adaptable temporary buildings
doi https://doi.org/10.52842/conf.ecaade.2010.243
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.243-251
summary We employ the possibilities of parametric modeling software andcustomized mass production machinery to develop a design for adaptablemultifunctional temporary medium size buildings made from recyclable lightweight materials and built a prototype from cardboard. We developed agrasshopper script that controls the geometry of a self-supporting arc made from a folded plane. The project is conducted as an experimental design-and-build university course that familiarizes students with parametric thinking and designing and with carrying out a project from initial concepts through tobuilding a 1:1 prototype. This project is part of an ongoing series of investigative design & build courses integrating current design possibilities and construction methods.
wos WOS:000340629400026
keywords Parametric design; Grasshopper script; Temporary low-cost buildings; Student design build projects; CAAM methods
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2010_205
id sigradi2010_205
authors Miotto, Bruscato Underléa; García Alvarado Rodrigo
year 2010
title Muro - pixel: exploración digital de un sistema constructivo de placas entrelazadas [Muro - pixel: digital exploration of a constructive system with interlocking plates]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 205-208
summary This paper reports the initial development of a constructive system based on interlocked boards manufactured through digital fabrication. The system is based on the elaboration of grooves in regular pieces by a laser - cutter or CNC - machines to develop self - supported configurations. A parametric design system has been designed and several material models and full - scale prototypes have been built. Although the system requires evaluation of its structural features, production and maintenance, it offers novel building alternatives. This experience set up an innovative way of performing experimental research to develop new products and possible designs.
keywords digital fabrication, constructive system, parametric design, flexible wall, assembly
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2010_392
id sigradi2010_392
authors Papanikolaou, Dimitris
year 2010
title Understanding Behavior of Self - Organizing Vehicle Sharing Systems
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 392-395
summary Mobility on Demand (MoD) is a self - organizing one - way vehicle sharing system that allows users to pick - up from and drop - off to at station. MoD uses sensors to understand fleet distribution asymmetry and price incentives to motivate users to drive vehicles to stations that need the them most thereby increasing service performance. This paper presents current work done at the Smart Cities group of the MIT Media Lab for understanding decision - making in dynamically priced vehicle sharing systems, and exploring the circumstances under which such systems can become stable, sustainable, and profitable.
keywords vehicle - sharing, mobility on demand, dynamic pricing, system dynamics, self - organization
series SIGRADI
email
last changed 2016/03/10 09:57

_id acadia20_668
id acadia20_668
authors Pasquero, Claudia; Poletto, Marco
year 2020
title Deep Green
doi https://doi.org/10.52842/conf.acadia.2020.1.668
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 668-677.
summary Ubiquitous computing enables us to decipher the biosphere’s anthropogenic dimension, what we call the Urbansphere (Pasquero and Poletto 2020). This machinic perspective unveils a new postanthropocentric reality, where the impact of artificial systems on the natural biosphere is indeed global, but their agency is no longer entirely human. This paper explores a protocol to design the Urbansphere, or what we may call the urbanization of the nonhuman, titled DeepGreen. With the development of DeepGreen, we are testing the potential to bring the interdependence of digital and biological intelligence to the core of architectural and urban design research. This is achieved by developing a new biocomputational design workflow that enables the pairing of what is algorithmically drawn with what is biologically grown (Pasquero and Poletto 2016). In other words, and more in detail, the paper will illustrate how generative adversarial network (GAN) algorithms (Radford, Metz, and Soumith 2015) can be trained to “behave” like a Physarum polycephalum, a unicellular organism endowed with surprising computational abilities and self-organizing behaviors that have made it popular among scientist and engineers alike (Adamatzky 2010) (Fig. 1). The trained GAN_Physarum is deployed as an urban design technique to test the potential of polycephalum intelligence in solving problems of urban remetabolization and in computing scenarios of urban morphogenesis within a nonhuman conceptual framework.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia10_340
id acadia10_340
authors Tamke, Martin; Riiber, Jacob; Jungjohann, Hauke
year 2010
title Generated Lamella
doi https://doi.org/10.52842/conf.acadia.2010.340
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 340-347
summary The hierarchical organization of information is dominant in the setup of tectonic structures. In order to overcome the inherent limitations of these systems, self-organization is proposed as a means for future design. The paper exemplifies this within the research project “Lamel la Flock”. The research takes its point of departure in the structural abilities of the wooden Zollinger system: a traditional structural lamella system distributed as a woven pattern of interconnected beams. Where the original system has a very limited set of achievable geometries our research introduces an understanding of beam elements as autonomous entities with sensorymotor behaviour. By this means freeform structures can be achieved Through computation and methods of self-organization, the project investigates how to design and build with a system based on multiple and circular dependencies. Hereby the agent system negotiates between design intent, tectonic needs, and production. The project demonstrates how real-time interactive modeling can be hybridized with agent–based design strategies and how this environment can be linked to physical production. The use of knowledge embedded into the system as well as the flow of information between dynamic processes, Finite Element Calculation and machinery was key for linking the speculative with the physical.
keywords agent based systems, digital fabrication, aware models, wooden structures, industrial collaboration, 1:1 demonstrator
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia10_196
id acadia10_196
authors Tenu, Vlad
year 2010
title Minimal Surfaces as Self-organizing Systems
doi https://doi.org/10.52842/conf.acadia.2010.196
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 196-202
summary Minimal surfaces have been gradually translated from mathematics to architectural design research due to their fascinating geometric and spatial properties. Tensile structures are just an example of their application in architecture known since the early 1960s. The present research relates to the problem of generating minimal surface geometries computationally using self-organizing particle spring systems and optimizing them for digital fabrication. The algorithm is iterative and it has a different approach than a standard computational method, such as dynamic relaxation, because it does not start with a pre-defined topology and it consists of simultaneous processes that control the geometry’s tessellation. The method is tested on triply periodic minimal surfaces and focused on several fabrication techniques such as a tensegrity modular system composed of interlocked rings (Figure 1).
keywords Minimal Surfaces
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ascaad2010_231
id ascaad2010_231
authors Turrin, M.; R. Stouffs and S. Sariyildiz
year 2010
title Parametric Design of the Vela Roof
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 231-240
summary Due to the increased request for representative structures and for spaces to be used independent of the weather conditions, contemporary cities increasingly integrate public covered spaces (shadowed squares and streets, courtyards, historic commercial galleries, etc.) in the urban fibre. Facing the design of large roof structures for semi outdoor spaces is increasingly common for architects and engineers. When focusing on large roofs, aesthetics, structural performance and economics often dominate the design process. However, the current increased emphasis on energy-related aspects generates new challenges. Particularly, the use of renewable energy resources needs to be confronted. In this paper we will address the subject through a case study whose design aimed at integrating performance evaluations in the very early stages of the process. The case study focuses on the so-called “Vela roof”. This roof is part of a larger project currently under construction in Bologna (Italy). The focus of the study concerns the use of on-site renewable climate (energy) resources with special attention given passive reduction of summer overheating and daylight. For these tasks a parametric model was developed to support the decision making process and the paper will present its potential with respect to performance-oriented design during the conceptual design phase of roof structure. The very first conceptual design developed by the architectural office was assumed as a starting point for the inclusion of performance criteria. In the preliminary design of the roof uncomfortable conditions were expected under the whole roof in the summer. Various strategies for improving the thermal comfort were investigated, involving a large set of combined systems. Not all of these will be detailed in this paper. Instead we will focus on the ones directly affected by the geometry of the roof. Those are mainly air flow for cooling and the reduction of solar gain, in combination with their effects on daylight. Their investigation was based on a chain of dependencies to be integrated in the design process. With respect to that, parametric modelling was used. Parametric modelling allows both geometrical entities and their relationships to be represented. These relationships are structured in a hierarchical chain of dependencies, established during the preliminary parameterization process. The independent properties of the model are usually expressed through independent parameters, and their variations generate different configurations of the model. By making use of this potential, three project scales were parametrically explored. At the large scale, parametric variations of the overall shape of the roof were investigated in relation to cooling through ventilation and here the parametric model allowed for the generation of both different configurations of the roof, including its structural morphology and variations of its structural tessellation. At the medium scale, the integration of openable modules was investigated in relation to air extraction for cooling; with respect to this, the parametric model allows exploring openings based on variations of size and distribution. At the small scale, various options were explored for the cladding system, in order to reduce the direct solar gain while still allowing the income of indirect natural light. The parametric model was used to investigate the configuration of self-shading modules and their integration in the structure. Specific emphasis will be given to the small scale. The advantages in design process and the current limits of the parametric modelling approach used here will be discussed in the paper.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_085
id ecaade2010_085
authors Ulu, Ebru Arkut; Arkut, Burcu; Gun, Onur Yuce
year 2010
title Future Community in Istanbul: An interpretation of Istanbul to generate a new urban life
doi https://doi.org/10.52842/conf.ecaade.2010.295
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.295-303
summary The parametric design techniques are developed over the past 15 years. And a new style called parametricism is born, which is the style rooted in digital animation techniques. The parametricism is based on the advanced parametric design systems and scripting method (Schumacher, 2009). This study is the research of defining the city of Istanbul and the skyscraper together in the sense of the parametricism. The result is expected to be a self-sufficient urban living proposal by using generative and parametric tools and scripting techniques. The other purpose of this study is to examine the relationship between the skyscraper and the natural world, and the urban living.
wos WOS:000340629400031
keywords Skyscraper; Istanbul; Banyan tree; Upwards and downwards growth; Shape grammar
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2010_165
id ecaade2010_165
authors Wassermann, Klaus
year 2010
title SOMcity: Networks, Probability, the City, and its Context
doi https://doi.org/10.52842/conf.ecaade.2010.197
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.197-205
summary Cities have always been locations of densified collections of various kinds of networks. While usually networks are conceived as a kind of immaterial logistic devices, we emphasize another quality of networks, their capabilities for associative learning. We propose autonomous associative networks in their probabilistic flavor, such as so-called Self-Organizing Maps, as abstract candidate structures for simulation experiments and as actualized structures of real cities as well. The properties of Self-Organizing Maps allow to introduce a whole new area of analytical procedures to conceive of the city and its properties. It also makes it possible to operationalize the attractivity of cities or the success of the implementation of urban planning.
wos WOS:000340629400021
keywords Urban theory; Participation; Self-organizing maps (SOM); Associativity; Network-based metric
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2010_168
id ecaade2010_168
authors Halatsch, Jan; Caro, Thomas; Moser, Bruno; Schmitt, Gerhard
year 2010
title A Grammar-based Procedural Design Guideline Visualization Diagram for the Development of SVA Masdar
doi https://doi.org/10.52842/conf.ecaade.2010.833
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.833-840
summary Nowadays, a large set of involved planning parties are heavily demanded with the definition of holistic in kind requirement specifications for urban planning sites – so called future cities. However, the resulting amountof specifications for a specific building project poses a great challenge to designers and planners especially when it comes to include this information into their design proposals for a sustainable urban development. These design performance criteria are traditionally expressed in textual and numerical planning guidelines and which are making it difficult to establish a comprehensive and holistic view onto the domain itself. Therefore we present in this paper a design guide visualization method to overcome this situation for the evaluation of design specification and urban layouts in a qualitative and quantitative manner.
wos WOS:000340629400089
keywords Sustainable urban patterns; Shape grammars; Design evaluation; Urban planning; Design guide translation
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2014_035
id ecaade2014_035
authors Kate_ina Nováková and Henri Achten
year 2014
title Do (not) sketch into my sketch - A comparison of existing tools
doi https://doi.org/10.52842/conf.ecaade.2014.2.237
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 237-243
summary Various computer-aided sketch tools can be used to support architectural designing (Tang, Lee, Gero, 2010) either individually in early stage of the process or in communication. We focus on the second mentioned. The goal of this paper is to give an overview of possible applications and mention the platforms which are supported. We explore the advantages or disadvantages of the tools and compare it with our newly developed application called ColLab sketch. With this application we hope in increasing speed and ease of graphic communication on one hand and testing architects demands on the other hand. We develop multiple criteria for evaluating the tools, while believing this paper could be of use to give a hint how to improve remote as well as co-located collaborative designing by sketch. Architectural designing is a very sensitive topic when it comes to sketching. Finally, we would like to compare the newly developed tool to this list and suggest improvements or experiments that help its finalizing.
wos WOS:000361385100025
keywords Sketching; collaboration; electronic devices; sketch applications
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia10_348
id acadia10_348
authors Schmiedhofer, Heinz
year 2010
title Interactive Geometric Design of Architectural Freeform Hulls with Embedded Fabrication Information
doi https://doi.org/10.52842/conf.acadia.2010.348
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 348-356
summary As a possible solution to the quandary of seeing two natural parts of the architectural process—free design and successive rationalization--in the hands of two separate professions when it comes to freeform architecture, this paper proposes the incorporation of respective geometric information into architectural design tools. An exemplary prototypical software is introduced, empowering an architect to interactively design and edit architectural freeform shapes represented as regular quad meshes with planar faces. The sustained planarity of faces is an integral part of the design process, thus considerably decreasing the need for elaborate post processing towards feasibility.
keywords architectural geometry, architectural freeform design, PQ meshes, planar quads, architectural CAD modeling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_250693 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002