CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 450

_id acadia20_464
id acadia20_464
authors Elberfeld, Nathaniel; Tessmer, Lavender; Waller, Alexandra
year 2020
title A Case for Lace
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 464-473.
doi https://doi.org/10.52842/conf.acadia.2020.1.464
summary Textiles and architecture share a long, intertwined history from the earliest enclosures to contemporary high-tech tensile structures. In the Four Elements of Architecture, Gottfried Semper (2010) posited wickerwork and carpet enclosures to be the essential origins of architectural space. More recently, architectural designers are capitalizing on the characteristics of textiles that are difficult or impossible to reproduce with other material systems: textiles are pliable, scalable, and materially efficient. As industrial knitting machines join robotic systems in architecture schools with fabrication- forward agendas, much of the recent developments in textile-based projects make use of knitting. In this paper, we propose an alternative textile technique, lacemaking, for architectural fabrication. We present a method for translating traditional lacemaking techniques to an architectural scale and explore its relative advantages over other textiles. In particular, we introduce bobbin lace and describe its steps both in traditional production and at an architectural scale. We use the unique properties of bobbin lace to form workflows for fabrication and computational analysis. An example of computational analysis demonstrates the ability to optimize lace-based designs towards particular labor objectives. We discuss opportunities for automation and consider the broader implications of understanding a material system relative to the cost of labor to produce designs using it.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2010_241
id ascaad2010_241
authors Aboreeda, Faten; Dina Taha
year 2010
title Using Case-Based Reasoning to Aid Sustainable Design
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 241-246
summary Since so far there exists only one planet, sustainable design is considered the (ethical) future in all fields of design. Although both architecture and construction are being considered major emitters of green house gases, a wise design not only can lead to minimizing this impact but it can also lead to restoring and regenerating the environment to a sustainable state. This paper presents an on-going research that aims at simplifying the elements and facilitating the process of sustainable design by using case-based reasoning. This is achieved through learning from past experiences; both good and bad ones, by providing a database application with a process-friendly interface which divides the main pillars of sustainable design into categories. Each building contains different stories related to different sustainable related issues. Each story can be repeated in /linked to many buildings. By providing designers with those past experiences, it is believed that deeper-studied designs can be more easily developed. Also a deeper analysis and understanding can be further implemented and produced with less effort for experienced and non-experienced architects in sustainable design. This would also decrease the consumption of time during the design process and encourage even more designers to integrate the sustainability concept into more designs. This research discusses the influence of sustainable design within the architectural domain, and suggests a computer application that aids architects during the preliminary design processes.
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2010_244
id sigradi2010_244
authors Bunster, Victor
year 2010
title Between Thermal Efficiency and Formal Expression: Tropism as a Method for Layering Control in Generative Design
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 244-247
summary The definition of architectonic features often requires negotiation between diverse classes of design conditions merging in particular elements. The use of encompassing concepts opens possible approaches for layering control between these assorted factors. This study presents a method for the implementation of tropism as a conceptual gathering procedure in social housing windows definition, aiming to enhance the relationship between building and context in terms of spatial comfort and formal expression.
keywords tropism, generative architecture, diffusion limited aggregation, rhetorical structure theory, social housing
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia10_110
id acadia10_110
authors Di Raimo; Antonino
year 2010
title Architecture as Caregiver: Human Body - Information - Cognition
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 110-116
doi https://doi.org/10.52842/conf.acadia.2010.110
summary Recent studies in contemporary architecture have developed a variety of parameters regarding the information paradigm which have consequently brought different results and techniques to the process of architectural design. Thus, the emergence of an ecological thinking environment and its involvement in scientific matters has determined links moving beyond the conventional references that rely on information. It is characterized as an interconnected and dynamic interaction, concerning both a theoretical background and providing, at the same time, appropriate means in the architectural design process (Saggio, 2007, 117). The study is based on the assumption that Information Theory leads into a bidirectional model which is based on interaction. According to it, I want to emphasize the presence of the human body in both the architectural creation process and the use of architectural space. The aim of my study, is consequently an evaluation of how this corporeal view related to the human body, can be organized and interlinked in the process of architectural design. My hypothesis relies on the interactive process between the information paradigm and the ecological one. The integration of this corporeal view influences the whole process of architectural design, improving abilities and knowledge (Figure 1). I like to refer to this as a missing ring, as it occurs within a circular vital system with all its elements closely linked to each other and in particular, emphasizes architecture as a living being.
keywords Architecture, information paradigm, human body, corporeity, cognitive Science, cognition,circularity, living system
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia10_372
id acadia10_372
authors Dierichs, Karola; Menges, Achim
year 2010
title Material Computation in Architectural Aggregate Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 372-378
doi https://doi.org/10.52842/conf.acadia.2010.372
summary Aggregates are defined as large amounts of elements being in loose contact. In architecture they are mainly known as an additive in concrete construction. Relatively few examples use aggregates in their unbound form as an architectural material system in their own right. The investigation of potential architectural applications however is both a very relevant and unexplored branch of design research. Loose granular systems are inherently different from other architectural construction systems. One of the most decisive distinctions lies in the way information on those granular architectural systems is being generated, processed, and integrated into the design process. Several mathematical methods have been developed to numerically model granular behaviour. However, the need and also the potential of using so-called ,material’ computation is specifically relevant with aggregates, as much of their behaviour is still not being described in these mathematical models. This paper will present the current outcome of a doctorate research on aggregate architectures with a focus on information processing in machine and material computation. In the first part, it will introduce definitions of material and machine computation. In the second part, the way machine computation is employed in modelling granulates will be introduced. The third part will review material computation in granular systems. In the last part, a concrete example of an architectural aggregate model will be explained with regard to the given definition of material computation. Conclusively a comparative overview between material and machine computation in aggregate architectures will be given and further areas of development will be outlined.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2010_161
id ascaad2010_161
authors Loemker, Thorsten Michael
year 2010
title Design and Simulation of Textile Building Elements
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 161-170
summary In this paper we examine the use of textile building elements and investigate on their potential scope of application in architecture. Other than commonly used for spanned or tent-like structures we concentrate on the use of textiles for folded, crinkled and procumbent assemblies, as these seem to correspond much better with the textiles´ inherent properties. On closer examination of these properties it becomes obvious that fabric primarily exists in a loose, uneven and irregular physicality that can be adjusted and configured into different states that match specific criteria. That is why fabric is mainly used for covering, protecting or hiding objects, e.g. as apparel for people. Only at a second glance does one recognize that textiles can be used for many other purposes such as collecting, separating, filtering or even healing. Thus, in the first instance of this research we examined customary usages and classified them into different categories that aided us to further develop practical application areas for the architectural domain. Subsequently to the fact that the shape of a textile might alter under the influence of forces, the further focus of this research lied on the appraisal of digital simulation techniques and simulation engines to provide sophisticated instruments for the generation of the associated time-based geometric form of the fabric. External elements that might drive this deformation process such as wind, temperature, precipitation, as well as static and dynamic building components were considered in the simulation process in order to generate visual output of the corresponding shapes. Studies about bipartite materials that can control the deformation process and might lead the textile beyond its primary functionality conclude this work.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_81
id acadia10_81
authors Marcos, Carlos L.
year 2010
title Complexity, Digital Consciousness and Open Form: A New Design Paradigm
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 81-87
doi https://doi.org/10.52842/conf.acadia.2010.081
summary Complexity as a result of improved design capabilities through the use of computer tools was introduced in the architectural debate since these became irreplaceable. On the other hand, not every designer is genuinely aware of the logical implications that the use of these tools may entail. Used as a simple emulation of enhanced traditional design tools—drawings and models, they do not alter the process of design significantly. However, the potential of such tools beyond their instrumentality introduces designers into the realm of digital consciousness. This paper analyzes complexity as an inherent quality of computer aided architectural design in relation to four different digitally conscious design strategies. First, the increase of complexity involved in digital architectural designs because of their potentiality to manage enormous amounts of differentiated information. Second, the complexity inherent to an open form such as parametric or generative designs may be defined. Third, the use of the computer as a smart partner involved in the design process —i.e., form finding strategies— rather than as a simple efficient machine able to repeat our abilities faster and more effectively in certain roles of the design process. Finally, it analyzes the possibility of generating parameterized typologies as a result of the openness of form, as well as the increased complexity that randomness may introduce in algorithmic design. The paper concludes with reflections on complexity vs. simplexity considering the fact that the simplicity characteristic of Modernism aesthetics and constructive values collide with the baroque formal complexity achieved in generative design.
keywords Digital consciousness, complexity, added information, open form, form finding, randomness
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia10_151
id acadia10_151
authors Menges, Achim
year 2010
title Material Information: Integrating Material Characteristics and Behavior in Computational Design for Performative Wood Construction
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 151-158
doi https://doi.org/10.52842/conf.acadia.2010.151
summary Architecture as a material practice is still predominantly based on design approaches that are characterized by a hierarchical relationship that prioritizes the generation of geometric information for the description of architectural systems and elements over material specific information. Thus, in the early design stage, the material’s innate characteristics and inherent capacities remain largely unconsidered. This is particularly evident in the way wood constructions are designed today. In comparison to most construction materials that are industrially produced and thus relatively homogeneous and isotropic, wood is profoundly different in that it is a naturally grown biological tissue with a highly differentiated material makeup . This paper will present research investigating how the transition from currently predominant modes of representational Computer Aided Design to algorithmic Computational Design allows for a significant change in employing wood’s complex anisotropic behaviour, resulting from its differentiated anatomical structure. In computational design, the relation between procedural formation, driving information, and ensuing form, enables the systematic integration of material information. This materially informed computational design processes will be explained through two research projects and the resultant prototype structures. The first project shows how an information feedback between material properties, system behaviour, the generative computational process, and robotic manufacturing allows for unfolding material-specific gestalt and tapping into the performative potential of wood. The second project focuses on embedding the unique material information and anatomical features of individual wooden elements in a continuous scanning, computational design and digital fabrication process, and thus introduces novel ways of integrating the biological variability and natural irregularities of wood in architectural design.
keywords Computational Design, Digital Fabrication, Material Properties, Behavioural Modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id caadria2010_040
id caadria2010_040
authors Neisch, P.
year 2010
title Thai children’s participation in development of 3D virtual village
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 423-431
doi https://doi.org/10.52842/conf.caadria.2010.423
summary This paper present the process of virtual world’s adaptation to the vision of the real environment designed by the children of two primary Thai schools – a state school and a private school. The main point of the present paper is presentation of empirical research that is an analysis of four exercises – inquiries in which I asked children to draw the elements of their city and social life. The first task was to represent a route from home to school. Next, children were asked to draw the plan of their school, on which they had to differentiate the places dedicated to them, the common spaces and the spaces for another people. The last exercise done at school was related to the description of their family and their closest friends. At the end, the children were asked to draw an inside of their houses with the maximum of details. The results of representations of the daily life environments analysed and synthesised were rebuilt with the graphic computer tools. They will serve as the base of the conception of a 3D virtual village dedicated to the Thai children.
keywords Virtual / real; children; inquiry; drawing; pedagogic platform
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2010_026
id ecaade2010_026
authors Rafi, Ahmad; Rani, Ruzaimi Mat
year 2010
title Visual Perception and Visualization Tools for Visual Impact Assessment (VIA) on Urban Streetscape
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.575-581
doi https://doi.org/10.52842/conf.ecaade.2010.575
wos WOS:000340629400062
summary Two different surveys were conducted for visual impact assessment (VIA) on urban streetscape namely – the visual perception and visualization tools. The first was focused on the visual perception between designers and nondesigners of the undergraduate students from four different public universities in Malaysia representing landscape architecture and business administration courses whereas the latter concentrated on students with a background of landscape architecture and quantity surveyor to evaluate static and dynamic visualization tools. The paper discussed the findings of the visual perception and visualization tools surveys, and its impact towards improving VIA on urban streetscape.
keywords Visual perception; Visualization tool; Visual impact assessment; Urban streetscape
series eCAADe
email
last changed 2022/06/07 08:00

_id e5a8
id e5a8
authors Saghafi, Mahmoud Reza; Jill Franz, Philip Crowther
year 2010
title Crossing the Cultural Divide: A Contemporary Holistic Framework for Conceptualising Design Studio Education
source CONNECTED 2010 – 2ND INTERNATIONAL CONFERENCE ON DESIGN EDUCATION 28 JUNE - 1 JULY 2010, UNIVERSITY OF NEW SOUTH WALES, SYDNEY, AUSTRALIA
summary While the studio is widely accepted as the learning environment where architecture students most effectively learn how to design (Mahgoub, 2007:195), there are surprisingly few studies that attempt to identify in a qualitative way the interrelated factors that contribute to and support design studio learning (Bose, 2007:131). Such a situation seems problematic given the changes and challenges facing education including design education. Overall, there is growing support for re-examining (perhaps redefining) the design studio particularly in response to the impact of new technologies but as this paper argues this should not occur independently of the other elements and qualities comprising the design studio. In this respect, this paper describes a framework developed for a doctoral project concerned with capturing and more holistically understanding the complexity and potential of the design studio to operate within an increasingly and largely unpredictable global context. Integral to this is a comparative analysis of selected cases underpinned by grounded theory methodology of the traditional design studio and the virtual design studio informed by emerging pedagogical theory and the experiences of those most intimately involved – students and lecturers. In addition to providing a conceptual model for future research, the framework is of value to educators currently interested in developing as well as evaluating learning environments for design.
keywords design studio, learning environment, online education
series other
type normal paper
email
more http://eprints.qut.edu.au/32147/1/c32147.pdf
last changed 2010/11/16 08:26

_id caadria2010_021
id caadria2010_021
authors Schnabel, Marc Aurel and Evelyn L. C. Howe
year 2010
title The interprofessional virtual design studio
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 219-228
doi https://doi.org/10.52842/conf.caadria.2010.219
summary With the advent of Web 2.0 technologies, the Virtual Design Studio (VDS) has been revived in many schools of architecture around the globe. The recently evolving online Social Networks (SN) Platforms, as instruments for learning, have provided a potentially fruitful operative base for VDS. Yet these platforms have not enabled the VDS to explore new frontiers. All participants come from the same professional field and learn elements directly related to their existing design curriculum. The development of the VDS for interprofessional learning moves design education beyond conventional boundaries. The Interprofessional VDS (IPVDS) is an innovative method of teaching students from two different professional faculties the skills required for successful consultancy and promotional communication in the public realm. The IPVDS enabled students to develop consultancy skills and evidence-based communication strategies appropriate for disparate target audiences. It employed a digital SN learning platform to engage remotely-located students in acquiring new skills, transferring knowledge and achieving learning outcomes that enrich their professional experience. The paper presents details of the IPVDS, its methodology, outcomes, and evaluation of the studio, and discusses how the IPVDS is effective in enabling architectural students to understand and use communication and consultancy skills for collaboration across professional disciplines for the purpose of community engagement.
keywords Virtual Design Studio; interprofessional; collaboration; consultancy; design skills
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2010_075
id ascaad2010_075
authors Schubert, Gerhard; Kaufmann Stefan and Petzold Frank
year 2010
title Project Wave 0.18
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 75-88
summary In recent years a number of projects have been emerged, in which the new possibilities of the computer as a design tool, have been used. Through the digital chain from design to manufacturing the efficiency has increased and allows the implementation of complex architectural structures. With all these new opportunities, also new challenges arise in the teaching and the educational concepts. The paper describes the detailed course concept and the didactic strategy using the example of a parametric designed roof structure, we designed, planed and build up in scale 1:1 within the main course. „Wendepunkt|e im Bauen“ (Turning point|s of building) is the name of an exhibition at the “Pinakothek der Moderne” in Spring 2010. In addition to contributions of the industrialization in the building industry from 1850 to the present day, the exhibition also serves as a platform, to demonstrate new possibilities of computer-aided parametric design and the closely related computer aided manufacturing (CAM). In this context, we took the chance to build a sculpture in Scale 1:1 to show the potential of a constant digital workflow and the digital fabrication. Through the digital chain from design to manufacturing, the efficiency has been increased by the computer and allows the implementation of new complex architectural structures. But the efficiency of the high-degree-automation through the use of computerized machines usually ends in the production of the components. Because this coincidence of the elements in the assembly often proves cost and time, the aim of the project was to optimize both, the production of components and their assembly as well. As part of the wintercourse 2009/2010 different aspects of automation have been reviewed and new solutions have been analyzed. Together with 15 students of the Faculty of Architecture the complete digital chain started with the first design ideas, about parametric programming through production and assembly had been researched, implemented and brought to reality. In the first steps, the students had to learn about the potential, but also about the problems coming with the digital-design and the attached digital-production. There for the course took part at our computerlab. In weekly workshops, all ideas have been implemented and tested directly in the 3-dimensional parametric model. And thanks to the interdisciplinary work with the Department of Structural Design also static factors had been considered, to optimize the form. Parallel to the digital form-finding process, the first prototypes have been produced by the students. By using the chairs 3D-CNC-Mills we were able to check the programmed connection detail in reality and apply the so learned lessons to the further development. After nearly 3 month of research, designing, planning and programming, we were able to produce the over 1000 different parts in only 4 days. By developing a special pre-stressed structure and connection detail it was also possible, to assemble the whole structure (13.5m x 4.5m x 4m) in only one day. The close connection between digital design (CAD) and digital manufacturing (CAM) is an important point of our doctrine. By the fact, that the students operate the machines themselves, but also implement projects on a scale of 1:1, they learn to independently evaluate these new tools and to use them in a meaningful way.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_130
id ecaade2010_130
authors Sdegno, Alberto
year 2010
title Digital Simulation of the City for Three Millions Inhabitants by Le Corbusier: Geometrical analysis, electronic reconstruction and video animation
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.549-556
doi https://doi.org/10.52842/conf.ecaade.2010.549
wos WOS:000340629400059
summary The research that is presented describes the geometrical analysis and the digital reconstruction of one of the most important designs by Le Corbusier: the City of Three Millions Inhabitants; it represents one of the most impressive solutions of the idea of Future City done during the XX Century, and a lot of its architectural elements are now part of contemporary buildings. The aim of the research was to understand the main morphological aspects of it and compare the different solutions made by the author during his life, starting from the first public presentation in occasion of the Salon d’Automne in Paris (1922) and to reconstruct the 3D digital realistic-textured model of it, in order to realize the video that describes the whole project of the city; the research was done at the Faculty of Architecture of the IUAV University of Venice.
keywords Le Corbusier; Urban design; Digital reconstruction; Simulation; Video
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id acadia10_340
id acadia10_340
authors Tamke, Martin; Riiber, Jacob; Jungjohann, Hauke
year 2010
title Generated Lamella
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 340-347
doi https://doi.org/10.52842/conf.acadia.2010.340
summary The hierarchical organization of information is dominant in the setup of tectonic structures. In order to overcome the inherent limitations of these systems, self-organization is proposed as a means for future design. The paper exemplifies this within the research project “Lamel la Flock”. The research takes its point of departure in the structural abilities of the wooden Zollinger system: a traditional structural lamella system distributed as a woven pattern of interconnected beams. Where the original system has a very limited set of achievable geometries our research introduces an understanding of beam elements as autonomous entities with sensorymotor behaviour. By this means freeform structures can be achieved Through computation and methods of self-organization, the project investigates how to design and build with a system based on multiple and circular dependencies. Hereby the agent system negotiates between design intent, tectonic needs, and production. The project demonstrates how real-time interactive modeling can be hybridized with agent–based design strategies and how this environment can be linked to physical production. The use of knowledge embedded into the system as well as the flow of information between dynamic processes, Finite Element Calculation and machinery was key for linking the speculative with the physical.
keywords agent based systems, digital fabrication, aware models, wooden structures, industrial collaboration, 1:1 demonstrator
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id caadria2010_010
id caadria2010_010
authors Tan, Beng-Kiang and Stephen Lim Tsung Yee
year 2010
title Place and placelessness in 3D online virtual world
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 103-112
doi https://doi.org/10.52842/conf.caadria.2010.103
summary This paper examines the issue of place-making in 3D virtual world from the design point of view. It aims to find out what are the elements to create a sense of place. As Second Life currently has the largest users among 3D virtual worlds, it is selected as a study case. The methodology consists of theoretical studies and ethnographic observation. Firstly, literature review of theories regarding place-making in the physical world and the virtual world were done. From that a framework was formulated as a common basis for ethnographic observations and interviews at three real world public spaces and four locations in Second Life. This paper presents findings from the latter. The focus areas are physical settings, activities and experience of users. The observations are discussed and criteria for place-making in multiuser 3D online virtual environments are proposed. This paper will contribute to the understanding of how to design a place rather than space in 3D online virtual world.
keywords 3D virtual world; Second Life; place-making; multiuser online virtual environment
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_253
id caadria2021_253
authors Vivanco Larrain, Tomas, Valencia, Antonia and Yuan, Philip F.
year 2021
title Spatial Findings on Chilean Architecture StyleGAN AI Graphics
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 251-260
doi https://doi.org/10.52842/conf.caadria.2021.1.251
summary The use of StyleGAN algorithms proposes a novel approach in the investigation of architectural images. Even though graphical outcomes produced by StyleGAN algorithms are far from being architectural spaces, they might become a starting point in the creative process of architectural projects. By creating a database of specific categories of architectural images located in certain contexts, significant findings might emerge regarding their categorization in accordance to the style of a culture. This research analyzes the architectural images that result from implementing StyleGAN algorithms in a database of images of Chilean houses built between the years 2010 and 2020 and selected as finalist of the ´Project of the Year´ from international viewers and curators of the most viewed architectural website of the world. Our findings suggest that Chilean houses have two distinctive elements strongly influenced by human bias: the proportion of voids in the architectural-like generative volume and the integration of vegetation or landscape.
keywords StyleGAN; Chilean architecture; artificial intelligence; spatial findings
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_751036 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002