CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 453

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 9eef
id 9eef
authors Christenson, Mike
year 2010
title Registering visual permeability in architecture: Isovists and occlusion maps in AutoLISP
source Environment and Planning B: Planning and Design 37(6): 1128–1136
summary In this paper the design and execution of a simple AutoLISP routine for generating a map of plan isovists (in the sense of Benedikt) are discussed. Such a plan field of isovists is a registration of visibility from multiple station points within and around a building. More precisely, the plan field records the cumulative effect, over a spatial matrix, of occluded vision of a distant horizon. Thus, the plan field is termed an occlusion map. An occlusion map registers the effect which an observer's position in space has on their perception of architecture's visual permeability. Occlusion maps are shown here to be an important tool for comparing existing buildings in a historical sense and also as an effective design tool, particularly when an addition to an existing building is being contemplated, as an addition invariably affects the visual permeability of its host.
keywords AutoLISP, visibility, isovist
series journal paper
type normal paper
email
more doi:10.1068/b36076
last changed 2011/04/13 16:58

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.561
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2010_117
id ascaad2010_117
authors El Gewely, Maha H.
year 2010
title Algorithm Aided Architectural Design (Aaad)
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 117-126
summary Algorithm Aided Architectural Design (AAAD) is considered a second paradigm shift in the Architectural design process after the first one of bridging the conventional design process to the digital realm of design. This paper is divided into two parts, the first part comprehends the Algorithmic Architecture approach of from the point of view of tools, techniques, theories and practice in order to find the Algotecture theories on the map of Digital Architecture. Then, the paper exemplifies an application on Algorithmic Architecture. FALLINGWATER TOOLBOX VERSION 1.0 is a computational design demo tool for architects to aid in the house schematic design phase according to an analytical study of Frank Lloyd Wright's basic design rules and spatial program of his masterpiece; FallingWater House, (Edgar J. Kaufmann family house 1939). These rules have been transferred to algorithms and code thereafter. At a preceding stage, the Graphical User Interface (GUI) was developed using MAXScript 9.0. Using the FALLINGWATER TOOLBOX, infinite number of house prototypes can be generated within few minutes. Although, the FWT is based on a hypothetical design problem of producing prototype alternatives for a new house with the same identity of the Edgar Kaufmann House, the concept of the tool can be applied on a wider range of problems. It may help generating prototype alternative solutions for residential compounds design according to the required constraints.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_109
id ascaad2010_109
authors Hamadah, Qutaibah
year 2010
title A Computational Medium for the Conceptual Design of Mix-Use Projects
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 109-116
summary Mix use development is receiving wide attention for its unique sustainable benefits. Nevertheless, the planning and designing of successful mixed use projects in today's environment is a complex matrix of skill sets and necessary collaborations between various stakeholders and design professionals. From a design point of view, architects are required to manage and coordinate large information sets, which are many time at odds with one another. The expansive space of knowledge and information is at its best vague and substantially ill-structured. A situation that continues to overburden architects mental and intellectual ability to understand, address and communicate the design issue. In the face of this complex condition, designers are gravitating towards information modeling to manage and organize the expansive data. However, is becoming increasingly evident that current building information modeling applications are less suited for early design activity due to their interrupted and rigid workflows. Against this background, this paper presents a theoretical framework for a computational medium to support the designer during early phases of exploring and investigating design alternatives for mix-use projects. The focus is on the conjecture between programming and conceptual design phase; when uncertainty and ambiguity as at its maximum, and the absence of computational support continues to be the norm. It must be noted however, the aim of the medium is not to formulate or automate design answers. Rather, to support designers by augmenting and enhancing their ability to interpret, understand, and communicate the diverse and multi-faceted design issue. In literature on interpretation, Hans-Georg Gadamer explains that understanding is contingent on an act of construction. To understand something is to construct it. In light of this explanation. To help designers understand the design issue, is to help them construct it. To this end, the computational medium discussed in this paper is conceived to model (construct) the mix-use architectural program. In effect, turning it into a dynamic and interactive information model in the form of a graph (network). This is an important development because it will enable an entirely new level of interaction between the designer and the design-problem. It will allow the designer to gather, view, query and repurpose the information in novel ways. It will offer the designer a new context to foster knowledge and understanding about the ill-structured and vague design issue. Additionally, the medium would serve well to communicate and share knowledge between the various stakeholders and design professionals. Central to the discussion are two questions: First, how can architects model the design program using a graph? Second, what is the nature of the proposed computational medium; namely, its components and defining properties?
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_158
id ecaade2010_158
authors Kuo, Jeannette; Zausinger, Dominik
year 2010
title Scale and Complexity: Multi-layered, multi-scalar agent networks in time-based urban design
doi https://doi.org/10.52842/conf.ecaade.2010.651
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.651-657
summary Urban design, perhaps even more than architecture, is a timedependent discipline. With its multi-layered complexities, from individual buildings to entire regions, decisions made at one level, that may not show effect immediately, may prove to have disastrous consequences further down the line. The need to incorporate time-based simulations in urban modeling, and the demand for a means of evaluating the changes have led to explorations with multi-agent systems in computation that allow for decisions to be decentralized. From the first basic rule-based system of Conway’s Game of Life [1] to recent urban simulations developed at institutions like the ETH Zurich [2], or UCL CASA [3], these programs synthesize the various exigencies into complex simulations so that the designer may make informed decisions. It is however not enough to simply use parametrics in urban design. Rules or desires implemented at one scale may not apply to another, while isolating each scalar layer for independent study reverts to the disjunctive and shortsighted practices of past planning decisions. Central to current parametric research in urban design is the need to deal with multiple scales of urbanism with specific intelligence that can then feed back into the collective system: a networked parametric environment. This paper will present the results from a city-generator, developed in Processing by Dino Rossi, Dominik Zausinger and Jeannette Kuo, using multiagent systems that operate interactively at various scales.
wos WOS:000340629400070
keywords Agent-based modeling; Cellular automata; Parametric urbanism; Neural network; Complexity; Genetic algorithm; Urban dynamics
series eCAADe
email
last changed 2022/06/07 07:52

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2010_55
id sigradi2010_55
authors Monteiro, de Menezes Alexandre; Silva Viana Maria de Lourdes; Pereira Junior Mário Lucio; Palhares Sérgio Ricardo
year 2010
title A adequação (ou não) dos aplicativos BIM às teorias contemporâneas de ensino de projeto de edificações [The sufficiency (or not) of BIM apps to contemporary theories of architecture project teaching]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 55-57
summary Two Brazilian academic laboratories at UFMG explored processes for conceptual creation and development of digital guidebooks about architectural drafting design and practice of environmental accessibility for all. It is expected that students may achieve high critical and creative perspectives about knowledge construction in real life contexts by using digital interactive multimedia. This software package allows users to learn freely, at their own pace or location at any time, in a sequence of instruction units. In order to improve students’ autonomy in acquiring learning skills, a new, interdisciplinary, culture seems to push the curriculum beyond conventional techniques.
keywords architectural drafting; digital interactive instruction; environmental accessibility; multimedia
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2010_160
id ecaade2010_160
authors Pak, Burak; Verbeke, Johan
year 2010
title A Virtual Environment Model for Brussels Capital Region’s Future Urban Development Projects: Preliminary Ideations
doi https://doi.org/10.52842/conf.ecaade.2010.539
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.539-547
summary This paper reports on a virtual environment model under development, specifically aimed at the discussion of possible tools and strategies for representation, communication and analysis of the urban development projects prepared for the Brussels Capital Region. In the introduction, certain characteristics of alternative urban development projects prepared for the Region are briefly reviewed and the opportunities provided by the latest information and communication technologies are discussed. Afterwards, the preliminary ideations of the model are provided through different illustrations and the initial implementations related to location-based representation, involving time dimension and augmented reality are presented. In conclusion, application challenges faced during the preliminary phase are reported and future directions are discussed.
wos WOS:000340629400058
keywords Urban models; Urban planning and design; GIS; Virtual environments
series eCAADe
email
last changed 2022/06/07 08:00

_id ascaad2010_075
id ascaad2010_075
authors Schubert, Gerhard; Kaufmann Stefan and Petzold Frank
year 2010
title Project Wave 0.18
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 75-88
summary In recent years a number of projects have been emerged, in which the new possibilities of the computer as a design tool, have been used. Through the digital chain from design to manufacturing the efficiency has increased and allows the implementation of complex architectural structures. With all these new opportunities, also new challenges arise in the teaching and the educational concepts. The paper describes the detailed course concept and the didactic strategy using the example of a parametric designed roof structure, we designed, planed and build up in scale 1:1 within the main course. „Wendepunkt|e im Bauen“ (Turning point|s of building) is the name of an exhibition at the “Pinakothek der Moderne” in Spring 2010. In addition to contributions of the industrialization in the building industry from 1850 to the present day, the exhibition also serves as a platform, to demonstrate new possibilities of computer-aided parametric design and the closely related computer aided manufacturing (CAM). In this context, we took the chance to build a sculpture in Scale 1:1 to show the potential of a constant digital workflow and the digital fabrication. Through the digital chain from design to manufacturing, the efficiency has been increased by the computer and allows the implementation of new complex architectural structures. But the efficiency of the high-degree-automation through the use of computerized machines usually ends in the production of the components. Because this coincidence of the elements in the assembly often proves cost and time, the aim of the project was to optimize both, the production of components and their assembly as well. As part of the wintercourse 2009/2010 different aspects of automation have been reviewed and new solutions have been analyzed. Together with 15 students of the Faculty of Architecture the complete digital chain started with the first design ideas, about parametric programming through production and assembly had been researched, implemented and brought to reality. In the first steps, the students had to learn about the potential, but also about the problems coming with the digital-design and the attached digital-production. There for the course took part at our computerlab. In weekly workshops, all ideas have been implemented and tested directly in the 3-dimensional parametric model. And thanks to the interdisciplinary work with the Department of Structural Design also static factors had been considered, to optimize the form. Parallel to the digital form-finding process, the first prototypes have been produced by the students. By using the chairs 3D-CNC-Mills we were able to check the programmed connection detail in reality and apply the so learned lessons to the further development. After nearly 3 month of research, designing, planning and programming, we were able to produce the over 1000 different parts in only 4 days. By developing a special pre-stressed structure and connection detail it was also possible, to assemble the whole structure (13.5m x 4.5m x 4m) in only one day. The close connection between digital design (CAD) and digital manufacturing (CAM) is an important point of our doctrine. By the fact, that the students operate the machines themselves, but also implement projects on a scale of 1:1, they learn to independently evaluate these new tools and to use them in a meaningful way.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ascaad2010_189
id ascaad2010_189
authors Allahaim, Fahad; Anas Alfaris and David Leifer
year 2010
title Towards Changeability
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 189-200
summary Many buildings around the world have undergone successive changes over their life cycles. Regardless of the type or size of a building there are usually requirements for change due to several unanticipated forces and emerging uncertainties that act upon them. These changes might be in the building’s spatial, structural or service systems. This can be due to changes in the needs of occupants, the market demand or technological advances. Although buildings undergo change, current design practice does not address this and buildings are still designed as if they will remain static. This paper proposes an Adaptable Buildings Design (ABD) Framework to address the issue of adaptability in building design. Using this methodology uncertainties and future changes are first identified. To increase the building’s longevity, flexibility options are embedded and design rules are formulated to trigger these options when necessary. The value of adaptability is then assessed by implementing several simulations using Real Options Analysis (ROA). To demonstrate the approach, the ABD is applied to a multi-use commercial building case study. Flexibility is embedded in the building’s design across several systems allowing it to change and evolve over time based on a set of design rules. The buildings adaptability is then assessed using ROA. Positive results demonstrate the strength of the proposed methodology in addressing future change and uncertaintie.
series ASCAAD
email
last changed 2011/03/01 07:36

_id caadria2010_005
id caadria2010_005
authors Anay, Hakan
year 2010
title Computational aspects of a design process: Mario Botta’s single-family house in Breganzona
doi https://doi.org/10.52842/conf.caadria.2010.049
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 49-58
summary The present study aims to foreground and investigate computational aspects of the design process of Mario Botta’s single-family house in Breganzona. Through the selected case, it mainly addresses the research question, “what are the computational aspects of the examined design process and what is the nature of such aspects?” or, otherwise formulated, “what aspects of such a design process could be formalised, and thus, represented or explained in computational terms?” The study primarily involves analysis and investigation of the “material”; the sketches and the drawings produced during the design process and through this material, reinterpretation, and hypothetical reconstruction of the process. The material is taken as the container of design ideas / concepts and operations, and a formal / conceptual analysis is employed to foreground and extract this content.
keywords Design process; design analysis; design computation; design knowledge
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_125
id acadia10_125
authors Andersen, Paul; Salomon, David
year 2010
title The Pattern That Connects
doi https://doi.org/10.52842/conf.acadia.2010.125
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 125-132
summary While patterns have a spotty history in architecture, their definitions and uses in other fields offer new possibilities for design. This paper examines those definitions and uses—including theories put forward by architectural theorist, Christopher Alexander; art educator, Gyorgy Kepes; chemist, Ilya Prigogine; and anthropologist, Gregory Bateson. Of particular interest is the shift from eternal, essential, universal, and fundamental patterns to fleeting, superficial, specific, and incidental versions. While endemic to many contemporary architectural practices, this multifaceted view of patterns was anticipated by Bateson, who saw them as agents of evolution and learning. His desire to combine redundancy and noise offers architects new ways to understand patterns and use them to link form and information, matter and thought.
keywords pattern, Bateson, evolution, noise, redundancy, feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia22_128
id acadia22_128
authors Azel, Nicolas; Pachuca, Brandon; Wilson, Lucien
year 2022
title Closing the Gap
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 128-137.
summary This paper shares KPF Cloud Tools, a platform for using Rhino Compute (McNeel’s REST API for RhinoCommon and Grasshopper) to run a library of Grasshopper tools through a cloud server via a Rhino plugin with a procedurally generated user interface, making it quick to deploy new tools (Robert McNeel & Associates 2010). We describe the professional challenges that the KPF Cloud Tools platform solves, document the technical implementation of the platform, and illustrate its benefit through the impact on a large architectural practice.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
doi https://doi.org/10.52842/conf.caadria.2021.1.241
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2010_000
id ascaad2010_000
authors Bennadji, Amar; Bhzad F. Sidawi & Rabee M. Reffat (eds.)
year 2010
title CAAD - Cities - Sustainability
source 5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010)[ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, 361 p.
summary The concepts and applications of Computer Aided Architectural Design (CAAD) have a predominant presence and impacts on our today’s buildings and cities. The 5th international ASCAAD conference invited academics, researchers and professionals interested in CAAD concepts applications on the built environment to join and contribute to the debate on learned lessons from the past and present impacts of CAAD on buildings and cities around the world along with the potential future from a CAAD perspective.
series ASCAAD
email
last changed 2011/03/01 07:36

_id acadia10_145
id acadia10_145
authors Briscoe, Danelle
year 2010
title Information Controlled Erosion
doi https://doi.org/10.52842/conf.acadia.2010.145
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 145-150
summary This paper documents research of a design process that interrelates a single information model to 5-axis, waterjet cutting technology. With the intention of creating an optimized design, data is streamed through a building information model that controls geometry parametrically by a component/system relationship. At the scale of a 4’x8’ panel, material properties and pattern variability act as underlying initiators of design rather than post-rational information. In a manner uncommon to the discipline, the information model is being used as a generative tool, rather than as one for mere documentation. The research assigns a limestone wall type to the panel—a material predominantly used in areas where it is indigenous and typically desirable for its texture, color, and thermal properties. The intention is to develop potentialities through material specificity in the information model’s conceptualization. The water-jet process is then used to erode the limestone to achieve varying fields of scalar voids. In addition, the thickness of wall cladding attenuates for figuration and interest. The final stone panels transition from a rain screen system to a solar screen that modulates light, thereby linking environmental intentions to current technological capabilities. The information model is exported for analysis of daylight and structural dynamic qualities and quantities as part of the workflow. Parameters within the information model database facilitate a dimensionally controlled iterative process. Moreover, fabricating with building materials via the information model expedites a design and makes possible for materiality to move beyond merely conceptual representation.
keywords digital fabrication, information model
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_34469 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002