CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 170

_id ecaade2010_021
id ecaade2010_021
authors Gil, Jorge; Beirao, Jose; Montenegro, Nuno; Duarte, Jose
year 2010
title Assessing Computational Tools for Urban Design: Towards a “city information model”
doi https://doi.org/10.52842/conf.ecaade.2010.361
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.361-369
summary This paper presents an assessment of a selection software tools for urban design confronting their capabilities with the goals of the CityInduction research project. The goal of this paper is the assessment of existing platforms for computer aided urban design to select one as the basis for implementing the urban design model proposed in the CityInduction project. This model includes three sub-models that support the formulation of design programs from contextual information, the exploration of designs solutions through a grammarbased generative approach, and the validation of designs against the program through the use of evaluation tools. To each of these sub-models corresponds a module in the envisioned platform and so, existing platforms are assessed in terms of their ability to support the implementation of each module. The current goal is a proof-of-concept implementation, but the final goal is the development of a complete platform for supporting urban design.
wos WOS:000340629400038
keywords Software review; Sustainable urban design; GIS; CAAD; BIM
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia10_348
id acadia10_348
authors Schmiedhofer, Heinz
year 2010
title Interactive Geometric Design of Architectural Freeform Hulls with Embedded Fabrication Information
doi https://doi.org/10.52842/conf.acadia.2010.348
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 348-356
summary As a possible solution to the quandary of seeing two natural parts of the architectural process—free design and successive rationalization--in the hands of two separate professions when it comes to freeform architecture, this paper proposes the incorporation of respective geometric information into architectural design tools. An exemplary prototypical software is introduced, empowering an architect to interactively design and edit architectural freeform shapes represented as regular quad meshes with planar faces. The sustained planarity of faces is an integral part of the design process, thus considerably decreasing the need for elaborate post processing towards feasibility.
keywords architectural geometry, architectural freeform design, PQ meshes, planar quads, architectural CAD modeling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id acadia10_218
id acadia10_218
authors Chok, Kermin; Donofrio, Mark
year 2010
title Structure at the Velocity of Architecture
doi https://doi.org/10.52842/conf.acadia.2010.218
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 218-226
summary This paper outlines a digital design workflow, utilized by the authors, which actively links the geometry platforms being utilized by architects with tools for structural analysis, design, form-finding, and optimization. This workflow leads to an accelerated generation and transfer of information to help guide and inform the design process. The engineering team is thus empowered to augment the architect’s design by ensuring that the design team is conscious of the structural implications of design decisions throughout the design process. A crucial element of this design process has been the dynamic linkage of parametric geometry models with structural analysis and design tools. This reduces random errors in model generation and allows more time for critical analysis evaluation. However, the ability to run a multitude of options in a compressed time frame has led to ever increasing data sets. A key component of this structural engineering workflow has become the visualization and rigorous interpretation of the data generated by the analysis process. The authors have explored visualization techniques to distill the complex analysis results into graphics that are easily discernable by all members of the design team.
keywords Workflows, Structure, Collaboration, Visualizations, Analysis
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2010_229
id ecaade2010_229
authors Aschwanden, Gideon D. P. A.; Wullschleger, Tobias; Müller, Hanspeter; Schmitt, Gerhard
year 2010
title Agent based Emission Evaluation of Traffic in Dynamic City Models
doi https://doi.org/10.52842/conf.ecaade.2010.717
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.717-726
summary We present a simulation platform to evaluate procedurally generated 3d city models with a set of agents representing urban street actors and pedestrians towards greenhouse gas emissions from transportation. Our aim is to give architects and urban planners an empiric tool to analyze, predict and quantify traffic fluctuations over time, and define the number of occupants, individual traffic and public transport in a city. In this project we show that the allocation of functions within a city is an important factor for the appearanceof traffic. The occupant’s decisions where they want to go are defined by the allocation of functions – and the distance defines the mode of transportation. We simulate the decision processes and gain information about the path, the mode of transportation, and the emissions they produce, and individual experiences like stress and effort. The autonomous driving cars are equipped with an acceleration based emission model allowing us to evaluate the inpact of jammed streets on the emission of cars.
wos WOS:000340629400077
keywords Urban planning; Multi-agent system; Generative city model; Occupant movement; Traffic emission
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
doi https://doi.org/10.52842/conf.acadia.2010.263
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac20108301
id ijac20108301
authors Chok, Kermin; Mark Donofrio
year 2010
title Abstractions for information based design
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 233-256
summary This paper discusses how live linkages between parametric geometry, structural analysis and optimization can be leveraged to explore an architectural massing from different perspectives of optimum assuming a set of cost and value characteristics. Broad performance measures such as program area, cladding surface and structural quantities were computed for each geometry variation and collected. Optimums from different perspectives (structure, developer, designer) were extracted for each height category and compared. To further inform and engage stakeholders, a variety of visualization and filtering techniques have been implemented. These new techniques and associated distillation of data aids the design team in understanding the design space. A script based approach towards geometry and data management has led to a shift towards active option evaluation and a more interactive approach to form exploration. A generic workflow for structural analysis, design and optimization has been implemented and this ability to engineer at a greater velocity will move the design profession towards a more collaborative and information based design environment.
series journal
last changed 2019/05/24 09:55

_id caadria2010_027
id caadria2010_027
authors Fernando, Ruwan; Robin Drogemuller, Flora Dilys Salim and Jane Burry
year 2010
title Patterns, heuristics for architectural design support: making use of evolutionary modelling in design
doi https://doi.org/10.52842/conf.caadria.2010.283
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 283-292
summary Software used by architectural and industrial designers has shifted from becoming a tool for drafting, towards use in verification, simulation, project management and remote project sharing. In more advanced models, design parameters for the designed object can be adjusted so that a family of variations can be produced rapidly. With the advances in computer aided design (CAD) technology, design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to leverage specialised design knowledge from various discipline domains (known as expert knowledge systems) as well as to support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques in order to monitor a designer’s cognition and intent based on their design history. This will lead to results that impact future work on design support systems which are capable of supporting implicit constraint and problem definition for wicked problems that are difficult to quantify.
keywords Design support; heuristics; generative modelling; parametric modelling; evolutionary computation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2010_179
id ecaade2010_179
authors Fotiadou, Angeliki
year 2010
title Computing Towards Responsive Architecture: Energy based simulation software for responsive structures
doi https://doi.org/10.52842/conf.ecaade.2010.507
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.507-513
summary The paper has two targets: a theoretical and a practical one which are totally dependant on each other: Its first purpose is to prove based on detailed comparative study by use of competent software apparatus that rotation in a building abiding by strict rules of adaptation to environmental changes (climate, season, time of day, sun duration etc.) should be viewed by modern architecture as a sine-qua-non in terms of energy consumption economy, environmental resources protection, achievement of high standards of living in the city. The aforementioned benefits will be evidenced by means of comparison of responsive structures to traditional ones. The second and most important purpose is to elaborate and provide the fundamental data and information for the creation of a supporting software for the above described model. The two in interaction will result in “revolution” in modern architecture.
wos WOS:000340629400055
keywords Simulation software; Responsive architecture; Kinetic; Energy consumption
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_051
id ecaade2010_051
authors Girot, Christophe; Bernhard, Mathias; Ebno_ther, Yves; Fricker, Pia; Kapellos, Alexandre; Melsom, James
year 2010
title Towards a Meaningful Usage of Digital CNC Tools: Within the field of large-scale landscape architecture
doi https://doi.org/10.52842/conf.ecaade.2010.371
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.371-378
summary The innovative and integrative use of digital CNC technologies in the field of landscape architecture is, for the most part, quite new when compared with the field of architecture. The following paper focuses on new techniques for visualizing work processes and developments for large-scale landscape designs. The integration of these processes within a teaching environment stands at the forefront. In this context, the use of programmed tools and the immediate translation of preliminary design ideas to models using the Mini Mill in the studio allow students to investigate and test new approaches. Next steps will be explored through the use of parametric design tools.
wos WOS:000340629400039
keywords Digital aids to design creativity; Generative design; Modes of production; Shape studies
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac20108105
id ijac20108105
authors Grobman, Yasha Jacob; Abraham Yezioro; Isaac Guedi Capeluto
year 2010
title Non-Linear Architectural Design Process
source International Journal of Architectural Computing vol. 8 - no. 1, 41-54
summary The introduction of the computer to the architectural design process have facilitated the possibility to examine a large number of design alternatives by allowing continuous variation between pre defined constraints. However, for the most part, evaluation and comparison of the alternatives is still handled manually in a linear fashion by the designer. This paper introduces a different approach to the architectural design process, which calls for a multithreaded or a non-linear design process. In a non-linear design process design directions and alternatives are generated, presented and evaluated simultaneously, and in real time. As an example for a non-linear design process the Generative Performance Oriented Design model and software tool (GenPOD) are presented and discussed. Moving towards non-linear modes of design arguably increases design creativity by allowing generating and evaluating a greater number and variation of design alternatives.
series journal
last changed 2019/05/24 09:55

_id ascaad2010_051
id ascaad2010_051
authors Lim, Chor-Kheng
year 2010
title Towards a Framework for CAD/CAM Design and Construction Process in Freeform Architecture: A Case Study
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 51-64
summary The objective of this research is to apply the teaching of CAD/CAM media to basic design studios for 1~2 year undergraduate students. The research concludes a framework of “e-basic design studio” based on literature analysis and design studio observations, which including the new tectonics thinking and the operation of traditional 2D/3D design media and CAD/CAM digital tools.
series ASCAAD
email
last changed 2011/03/01 07:36

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2010_026
id ecaade2010_026
authors Rafi, Ahmad; Rani, Ruzaimi Mat
year 2010
title Visual Perception and Visualization Tools for Visual Impact Assessment (VIA) on Urban Streetscape
doi https://doi.org/10.52842/conf.ecaade.2010.575
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.575-581
summary Two different surveys were conducted for visual impact assessment (VIA) on urban streetscape namely – the visual perception and visualization tools. The first was focused on the visual perception between designers and nondesigners of the undergraduate students from four different public universities in Malaysia representing landscape architecture and business administration courses whereas the latter concentrated on students with a background of landscape architecture and quantity surveyor to evaluate static and dynamic visualization tools. The paper discussed the findings of the visual perception and visualization tools surveys, and its impact towards improving VIA on urban streetscape.
wos WOS:000340629400062
keywords Visual perception; Visualization tool; Visual impact assessment; Urban streetscape
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2011_140
id sigradi2011_140
authors Sanchez Cavazos, Maria E.; Sifuentes Solis, Marco A.
year 2011
title Percepción y Manipulación del Espacio en Proyectos Arquitectónicos dentro de una Sociedad Compleja [Perception and Manipulation of the Space in Architectonic Projects within a Complex Society]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 223-226
summary This research consisted on determining, analyzing and evaluating the factors that impact the ability to perceive and manipulate the architectonic space with the use of digital tools for Architectonic Design Workshop students at the U.A.A. The purpose of the research was to validate the model (MUHDyA) (CP+CM) (Sánchez, 2010), which presents a proposal about the use of digital and analogical tools in the acquisition of perceptive and manipulative skills (specific architectonic skill indicated by Tuning Latin America); considering that, the formation by skills is the answer of the architecture schools towards a complex society. Palabras calve
series SIGRADI
email
last changed 2016/03/10 09:59

_id ecaade2018_204
id ecaade2018_204
authors de Oliveira, Maria Jo?o, Moreira Rato, Vasco and Leit?o, Carla
year 2018
title KINE[SIS]TEM'17 - A methodological process for a Nature-Based Design
doi https://doi.org/10.52842/conf.ecaade.2018.1.561
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 561-570
summary Architecture is the mediator between the Environment and Humans. Nature maximal performance and minimal resources creations are Humanity inspiration that led us to exceed structural, material, mechanisms, tools, systems and methods boundaries (Oxman, 2010).Nature are the Architect of the most reliable and sustainable systems. Looking into Nature's lessons, this paper presents a Nature-based design methodology conducted during Kine[SIS]tem'17 Shading Systems International Summer School, held by the ISCTE-Instituto Universitário de Lisboa, Portugal, between 19th - 30th June 2017. The methodology encompasses two main stages, one before and other during the Summer School. From a pre-definition of context constrains, a nature based design strategy, to a planning of the manufacture and construction still during the phase of development of the design, conducted the Summer School participants through a defined biomimetic process that achieved the construction of 1:1 scale prototype.
keywords Kinesis; Shading; System; Nature-based design
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2010_074
id ecaade2010_074
authors Droste, Stephan
year 2010
title Extreme Designing: Proposal for the transfer of concepts from the agile development to the architectural design process
doi https://doi.org/10.52842/conf.ecaade.2010.661
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.661-666
summary Obviously, design collaboration, the design process, and its methods are strongly interdependent. In order do understand collaborative processes and their requirements, methods of design process are focused prelimarly. After the hype during the last decades collaborative design seems to remain in a selfcentred discourse with little concrete application outside the academic world, while in the same time collaboration is omnipresent in conventional architectural design. Interestingly, the initiation of the so called agile methods in software design were initiated by new tools and paradigms in software design and on the other hand defective conditions in the collaborative process, corresponding widely to the challenges of the architectural design process. This paper opposes principles of software development to the architect’s approach to (early) design. Subsequently some implications for the extension of (collaborative) design tools are suggested.
wos WOS:000340629400071
keywords Design process; Collaborative design; Design methods; Agile processes; Software development
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2010_210
id ecaade2010_210
authors Lassance, Guilherme; Klouche, Djamel; Izaga, Fabiana; Duarte, Gabriel
year 2010
title Contemporary Metropolitan Conditions: New challenges for design education
doi https://doi.org/10.52842/conf.ecaade.2010.157
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.157-166
summary This paper aims to address design education issues, with a focus on the way the contemporary metropolis is conceived. We understand the reality of the contemporary metropolis as an amalgam of specific issues that transcend local and regional contexts, converging into the categories of the so-called ‘global cities’. These new urban realities derive from territories originally controlled by other logics, and are now in new stages of post-industrial development. Thus, we notice the presence of large peripheral areas where existing industrial activities initially took place, which were later transformed and migrated, leaving behind urban fragments that are taken over by informal activities. Such sites are often crossed, when not ‘on-winged’, by transport infrastructure, increasingly essential to the growing intensity of metropolitan flows. Working with this new reality clearly means first and foremost to reexamine the tools and traditional methods of design and representation of the architect and urban planner.
wos WOS:000340629400017
keywords Design process; Design education; Contemporary metropolis
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2010_173
id sigradi2010_173
authors Merlin, José Roberto
year 2010
title Instrumentos digitais na produção espacial: novas relações gesto, olhar, pensamento [Digital tools in space construction: new relationships between gestures, sight and thoughts]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 173-176
summary This work seeks to understand the creation of projects today given the radical changes in the relationships between the gestures, looks and thoughts of traditional architect due to the inclusion of digital technologies. Computers have been disseminated in architecture, leaving behind a phase of manually repeated drawing, and now reach all creative work by being able to insert the cultural characteristics of people through forms. This irreversible expansion has created the necessity for interdisciplinary study that generates a collective creative subject, whose work demands more respect for otherness and a sense of cooperation than individual intuition.
keywords architectural design; digital technologies; computer graphics; Creation in architecture; creativity
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_735999 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002