CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 452

_id ijac20108404
id ijac20108404
authors Erhan, Halil; Nahal H. Salmasi, Rob Woodbury
year 2010
title ViSA: A Parametric Design Modeling Method to Enhance Visual Sensitivity Control and Analysis
source International Journal of Architectural Computing vol. 8 - no. 4, p. 461
summary The ability of parametric computer-aided design systems to generate models rapidly enables designers to explore the downstream impacts of changes to key design parameters. However, the typical modeling functions provided in the parametric systems can become insufficient when such exploration is needed for increasingly complex parametric design models. Main challenges for exploration that we observed are control and analysis of changes on the design model and in particular, when they are introduced continuously. The system interfaces and the human-visual perception system alleviate these challenges. In this study, we demonstrate ViSA, a Visual Sensitivity Analysis method that aims to make the effects of change within a parametric model controllable, measurable and apparent for designers. The approach aims to improve visually analyzing the sensitivity of a design model to planned parametric changes. The method proposes customizable control and visualization features in the model that are decoupled from each other at the design level, while providing interfaces between them through parametric associations. We present findings from our case studies in addition to the results of a user study demonstrating the applicability and limitations of the proposed method.
series journal
last changed 2019/05/24 09:55

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2020_023
id caadria2020_023
authors Liu, Chenjun
year 2020
title Double Loops Parametric Design of Surface Steel Structure Based on Performance and Fabrication
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 23-33
doi https://doi.org/10.52842/conf.caadria.2020.1.023
summary In intelligent epoch, automatic parameter design systems reduce the requirements of the skills needed to create objects. The creator only needs to select the most perceptual primitive form to automatically generate the data system that iterates to the most efficient solution. In this paper, a method of combining performance driven optimization with parametric design is proposed. The iterative evolution is under the control of performance loop and fabrication loop, which makes all the data provided by parametric design in a practical project available for exploring structural analysis and digital prefabrication. Related to the case of surface steel structure, parametric optimization is not limited to a set of shape types or design problems, it would be based on the generality and built-in characteristics of parametric modelling environment in the most convenient and flexible way. (Rolvink et al. 2010)And the given parameters would be fed back on geometric structure, performance indicators, and design variables, so that designers can easily and effectively coordinate and try different solutions. The system transforms the generated data into machine language so that the process including design, analysis, manufacturing, and construction can maintain the orthogonal persistence of the data.
keywords parametric design; component prefabrication; curved steel structure; performance driven
series CAADRIA
email
last changed 2022/06/07 07:59

_id ascaad2010_039
id ascaad2010_039
authors Almusharaf, Ayman M.; Mahjoub Elnimeiri
year 2010
title A Performance-Based Design Approach for Early Tall Building Form Development
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 39-50
summary This paper presents a methodological interactive design approach within which structure is integrated into tall building form development. The approach establishes a synergy between generative and analytical tools to allow for parallel interaction of the formal and structural design considerations during the conceptual design phase. An integration of the associative modeling system, Grasshopper, and the structural analysis tool, ETABS was established, and a bi-directional feedback link between the two tools was initiated to guide the iterative from generation process. A design scenario is presented in this paper to demonstrate how the parametric generation and alteration of architectural form can be carried out based on instant feedback on the structural performance. Utilizing such a tool, architects can not only develop improved understanding of structural needs, but also realize their formal ideas structurally and materially.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_114
id ecaade2010_114
authors Apollonio, Fabrizio I.; Gaiani, Marco; Corsi, Cristiana
year 2010
title A Semantic and Parametric Method for 3D Models used in 3D Cognitive-Information System
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.863-872
doi https://doi.org/10.52842/conf.ecaade.2010.863
wos WOS:000340629400092
summary The paper presents an innovative semantic and parametric method to build 3D models to be used in cognitive-information systems. We integrated structured geometrical and documentary information resulting from multiple sources with the aim to enhance the knowledge of those sites within the frame of their historical evolution and their institutional management in a 3D GIS/DB. The developed applications were designed for different types of users, with a largely scalable interface, able to support different output devices and to work at different levels of iconicity. The system allows a full comprehension of the buildings in their own context, permitting to discover unknown relationships, to evaluate their architectural occupancy and to quickly access a complex system of information.
keywords 3D-GIS; Semantic modeling; 3D reality-based modeling; Real-time rendering; Virtual heritage
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_357
id acadia10_357
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2010
title A New Parametric Design Tool for Robot Milling
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 357-363
doi https://doi.org/10.52842/conf.acadia.2010.357
summary This paper proposes the use of parametric design software, which is generally used for real-time analysis and evaluation of architectural design variants, to create a new production immanent design tool for robot milling. Robotic constraints are integrated in the data flow of the parametric model for calculating, visualizing and simulating robot milling toolpaths. As a result of the design process, a physical model together with a milling robot control data file is generated.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2010_244
id sigradi2010_244
authors Bunster, Victor
year 2010
title Between Thermal Efficiency and Formal Expression: Tropism as a Method for Layering Control in Generative Design
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 244-247
summary The definition of architectonic features often requires negotiation between diverse classes of design conditions merging in particular elements. The use of encompassing concepts opens possible approaches for layering control between these assorted factors. This study presents a method for the implementation of tropism as a conceptual gathering procedure in social housing windows definition, aiming to enhance the relationship between building and context in terms of spatial comfort and formal expression.
keywords tropism, generative architecture, diffusion limited aggregation, rhetorical structure theory, social housing
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2010_140
id ecaade2010_140
authors Chronis, Angelos; Liapi, Katherine A.
year 2010
title Parametric Approach to the Bioclimatic Design of a Student Housing Building in Patras, Greece
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.313-319
doi https://doi.org/10.52842/conf.ecaade.2010.313
wos WOS:000340629400033
summary A new housing complex on the Campus of the University of Patras, Greece, is expected to serve as a test-bed for experimentation with a parametric design process that integrates significant climatic data. To optimize the environmental performance of the proposed housing complex a parametric design algorithm has been developed. The algorithm links the weather data in the area with the site topography and the basic geometric features of the buildings on the site. To explore the interaction of the building features with the prevailing winds in the area and the solar exposure throughout the year various software applications, including computational fluid dynamics (CFD) simulations, have been utilized. The inclusion of wind data in the algorithm renders it particularly effective. The developed parametric process has been useful during the early design phase when studies on various patterns for arranging the buildings on the site were conducted. The parametric process has facilitated the configuration of the typical building block as well.
keywords Bioclimatic design; Parametric design; Design algorithms; Sun control; Wind analysis; CFD in building design
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia10_234
id acadia10_234
authors de Monchaux, Nicholas; Patwa, Shivang; Golder, Benjamin; Jensen, Sara; Lung, David
year 2010
title Local Code: The Critical Use of Geographic Information Systems in Parametric Urban Design
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 234-242
doi https://doi.org/10.52842/conf.acadia.2010.234
summary Local Code uses geospatial analysis to identify thousands of publicly owned abandoned sites in major US cities, imagining this distributed, vacant landscape as a new urban system. Deploying GIS analysis in conjunction with parametric design software, a landscape proposal for each site is tailored to local conditions, optimizing thermal and hydrological performance to enhance local performance and enhance the whole city’s ecology. Relieving burdens on existing infrastructure, such a digitally mediated, dispersed system provides important opportunities for urban resilience and transformation. In a case study of San Francisco, the projects’ quantifiable effects on energy usage and stormwater remediation would eradicate 88-96% of the need for more expensive, centralized, sewer, and electrical upgrades. As a final, essential layer, the project proposes digital citizen participation to conceive a new, more public infrastructure as well.
keywords GIS, Parametric Design, Emergence, Morphogenesis, Network, Urban Design, Parametric Urbanism
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
doi https://doi.org/10.52842/conf.ecaade.2010.641
wos WOS:000340629400069
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2010_281
id sigradi2010_281
authors Granero, Adriana Edith; Garcia Alvarado Rodrigo
year 2010
title Flujo energético en las etapas tempranas del proceso de diseño arquitectónico y la importancia de generar aprendizajes significativos [Energy flow in early stages of architectural design process, and the importance of creating meaningful learning]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 281-284
summary This proposal seeks to stimulate energy conceptualization in the early stages of architectural design through the visualization of energy conditions as a dialogue in initial design configurations that is based on the integration of two software tools to facilitate meaningful learning. Students today have analytical intelligence that they have acquired through teaching themselves, and this has developed their creativity and their experiential - contextual practice; this permits effective interpretation of symbolic cognition. Digital tools of building, information modeling, and energy analysis can be related to specific features that promote this integrated design learning.
keywords KEY WORDS: performance views, building information modeling, visual and thermal comfort, integrated design learning, efficiency andoptimization.
series SIGRADI
email
last changed 2016/03/10 09:52

_id ascaad2010_019
id ascaad2010_019
authors Katz, Neil C.
year 2010
title Algorithmic Modeling; Parametric Thinking: Computational Solutions to Design Problems
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 19-36
summary Architects and designers have often used computational design techniques in their design process, even without "computers", from designing spaces which activate at the instant of the solstice sunrise, to creating geometrically complex and structurally innovative cathedrals. Designing with rules and variables can lead to solutions which satisfy the design criteria and may result in interesting and unanticipated models. Computational design is a process of designing and a way of thinking; contemporary tools can promote and enhance this process. Algorithmic and parametric modeling (and thinking) can be powerful processes in design, and particularly in working with complex geometry and addressing project constraints and analytical and data-driven design. This paper describes these methods and provides examples of their use on projects at Skidmore, Owings & Merrill.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_214
id ecaade2010_214
authors Lemberski, David; Hemmerling, Marco
year 2010
title Mixer Modeling – An Intuitive Design Tool: Using a hardware controller to actuate parametric design software
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.453-458
doi https://doi.org/10.52842/conf.ecaade.2010.453
wos WOS:000340629400049
summary Music and architecture share not only phenomenological similarities in relation to their characteristics - like volume, timbre, tone pitch, instrumentation vs. geometry, materiality, light ambiance or perspective - but imply as well comparability in the process of creation. The investigation of digital tools that cross borders between music and architecture was the starting point for the research project „Mixer Modeling“. Against this background the paper discusses the transformation of a musical composition controller into an intuitive design tool for the generation of architectural geometries. In the same amount that the use of a MIDI-controller increases the degrees of freedom for the simultaneous activation of various parameters the definition of geometric dependencies on the level of visual programming become more important for the resulting geometry.
keywords Intuitive design tool; Parametric design; Music and architecture; Hardware controller; MIDI; Visual programming; Human-computer interaction
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2010_135
id ascaad2010_135
authors Lostritto, Carl
year 2010
title Computation Without Computers
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 135-144
summary This work documents the implications of using physical media to teach digital design concepts, techniques, values and approaches. With the pedagogy and work of a seminar and studio across two Universities as test cases, this research seeks to prove that a parametric and algorithmic approach to architecture is most fruitfully understood as the connection between logic, mathematics and aesthetics. Students trace the indirect relationships between process and product so as to enable the application of these connections in a non-linear, exploratory and goal-flexible design process. The first phase of student work involves the creation of an image, constructed with ink or graphite on paper, that embodies a parametric aesthetic. Students are tasked articulating and performing operations, such as dividing a curve, packing shapes, and conditional transformations. Subsequently, students fabricate a surface-conscious model with modules that have the capacity to vary based on their grid parameter, using historically rooted techniques such as weaving, perforating, layering and tessellation. Digital fabrication and parametric modeling is then introduced, not as a means to a predefined end, but as another medium, capable of participating with manual techniques. As an example, a fabricated paper-based installation is generated with parametrically generating a cut-sheet, partially blind to its assembled manifestation. The hypothesis of this research is tested in more comprehensive projects that follow as environmental forces are resolved through dynamic and ambiguous visual and spatial conditions.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ijac20108306
id ijac20108306
authors Peters, Brady
year 2010
title Acoustic Performance as a Design Driver: Sound Simulation and Parametric Modeling using SmartGeometry
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 337-358
summary Acoustic performance is an inevitable part of architectural design. Our sonic experience is modified by the geometry and material choices of the designer. Acoustic performance must be understood both on the level of material performance and also at the level of the entire composition. With new parametric and scripting tools performance driven design is possible. Parametric design and scripting tools can be used to explore not only singular objectives, but gradient conditions. Acoustic performance is often thought of in terms of singular performance criteria. This research suggested acoustic design can be understood in terms of gradients and multiple performance parameters. Simulation and modeling techniques for computational acoustic prediction now allow architects to more fully engage with the phenomenon of sound and digital models can be studied to produce data, visualizations, animations, and auralizations of acoustic performance. SmartGeometry has promoted design methods and educational potentials of a performance-driven approach to architectural design through parametric modeling and scripting. The SmartGeometry workshops have provided links between engineering and architecture, analysis and design; they have provided parametric and scripting tools that can provide both a common platform, links between platforms, but importantly an intellectual platform where these ideas can mix. These workshops and conferences have inspired two projects that both used acoustic performance as a design driver. The Smithsonian Institution Courtyard Enclosure and the Manufacturing Parametric Acoustic Surfaces (MPAS) installation at SmartGeometry 2010 are presented as examples of projects that used sound simulation parametric modeling to create acoustically performance driven architecture.
series journal
last changed 2019/05/24 09:55

_id acadia10_320
id acadia10_320
authors Rajus, Vinu Subashini; Woodbury, Robert; Erhan, Halil I.; Riecke, Bernhard E.; Mueller, Volker
year 2010
title Collaboration in Parametric Design: Analyzing User Interaction during Information Sharing
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 320-326
doi https://doi.org/10.52842/conf.acadia.2010.320
summary Designers work in groups. They need to share information either synchronously or asynchronously as they work with parametric modeling software, as with all computer-aided design tools. Receiving information from collaborators while working may intrude on their work and thought processes. Little research exists on how the reception of design updates influences designers in their work. Nor do we know much about designer preferences for collaboration. In this paper, we examine how sharing and receiving design updates affects designers’ performances and preferences. We present a system prototype to share changes on demand or in continuous mode while performing design tasks. A pilot study measuring the preferences of nine pairs of designers for different combinations of control modes and design tasks shows statistically significant differences between the task types and control modes. The types of tasks affect the preferences of users to the types of control modes. In an apparent contradiction, user preference of control modes contradicts task performance time.
keywords Parametric Design, Collaboration, Human Interaction
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ascaad2010_271
id ascaad2010_271
authors Sharkasi, Nour; Ramzi Hassan and Caroline M. Hagerhal
year 2010
title Presence in Virtual Cave
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 271-278
summary Virtual Reality (VR) is usually recognized as a tool that enables the viewer to move freely in a three dimensional digital environment. In this virtual world, different levels of immersion could be reached. Using VR to visualize sites and places from the past, presents and future is widely acknowledged. This study is making use of a recently installed U-Cave theatre at Birzeit University (BZU) in Palestine and a Con-Cave VR theatre at the Norwegian University of Life Sciences (UMB).In the study, we test hypotheses connected to presence in virtual reality environments, using the case of historical sites. Historical sites in general are important for reasons of cultural identification and environmental integrity. In many historical sites, it is difficult for a layperson to read and understand the meaning of the site, for that the remaining ruins don’t provide enough information. This study will contribute to improving the public understanding for historical sites by unfolding the role of Virtual Reality to overcome the harsh reality of many damaged historical sites. The story-line of the site can be easily portrayed by re-constructing the original site in a virtual environment. The study also elaborates on the enriched sense of presence made possible by implementing different levels of details in the VR environment. Presence in VR environments is usually defined as “being there”, with high consideration of the physical ether of the virtual environment, the definition confines attention to the sensation of place. This study calls for expanding the attention to the dimension of time that is made possible by innovative design of VR environment. The study argues that virtual reality technology does not only provide a 3-D experience to subjects, it can also add a fourth dimension by conveying the unconsciousness of man from the meanwhile moment to a different timeframe. Based on the current knowledge on presence in virtual environments, we will use a questionnaire to measure subjective presence for the two VR theatre systems. The study will make use of the following factors in order to determine the degree of presence in the virtual environment: (1) naturalness of interface design and involvement, (2) control and interaction, (3) quality of technical capabilities, and (4) negative effects. The outcome of the study will verify or falsify some of the following hypotheses: • There is a correlation between modeling techniques and presence. The perception of the visual experience differs between traditional media and an immersive VR environment. • A presentation of a historical site in a VR-Cave environment will increase our subject’s awareness of the identity of the historical site. • The presence level is correlated to previous real exposure. Subjects who had been to a ruined historical site in real life, would experience higher level of presence toward the VR presentation than those who had not been to the historical site in reality. • Because of the display enclosure surround effect, it is believed that presence in a Con-Cave would be higher than of U-Cave VR environment.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_917297 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002