CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 330

_id b339
id b339
authors Bunster, Victor
year 2011
title Tropism-oriented generative design: Analogical models for heterogeneous goal integration
source Master of Philosophy (MPhil) Thesis. Faculty of Architecture, Building and Planning, The University of Melbourne.
summary Architecture often requires integration between heterogeneous objectives. Both empirical requirements and speculative aspirations inform design in ways that resist ready formalization under computerizable logic. This thesis explores the possibilities of tropism-analogy as strategy for tackling some of these diverse objectives in a generative system. The feasibility of addressing heterogeneous goals with a computerizable design system is established by reviewing the role of rule-based strategies in vernacular tradition and the possibilities of analogies in recent generative methods. Then, the concept of tropism is analysed in depth, starting from its origins to its manifestation in a broad range of disciplines. This analysis leads to the definition of tropism as a ‘process of turn’ that enables purposeful connections between a system and its environment, an invariant property that may result in different levels of adaptation. These generalized conditions are used as conceptual foundation to explore analogical connections between divergent dimensions of architectural problems, and to define a feedback-enabled generative system that uses tropism-inspired rules in tackling contrasting design objectives. This system is implemented as a proof-of-concept for the Chilean social housing program, where is used to generate façade prototypes that respond simultaneously to thermal comfort and formal expression criteria. The outcomes of this thesis suggest that tropism-analogy can be used in tackling heterogeneous façade objectives and, therefore, to define novel design methods to explore goal-integration in computer-based generative architecture systems.
keywords generative architecture, design computation, tropism analogy, goal integration, social housing
series thesis:MSc
type normal paper
email
more http://dtl.unimelb.edu.au/R/98KH7M6SLEUI1J2GUA82K5A1AQSR7NK9HMI4GPCRJGFAEYDGHF-01472?func=dbin-jump-full&object_id=277253&local_base=GEN01&pds_handle=GUEST
last changed 2012/07/06 17:57

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
doi https://doi.org/10.52842/conf.caadria.2011.175
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
doi https://doi.org/10.52842/conf.acadia.2011.186
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
doi https://doi.org/10.52842/conf.acadia.2011.318
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id acadia11_334
id acadia11_334
authors Khoo, Chin Koi; Burry, Jane; Burry, Mark
year 2011
title Soft Responsive Kinetic System: An Elastic Transformable Architectural Skin for Climatic and Visual Control
doi https://doi.org/10.52842/conf.acadia.2011.334
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 334-341
summary Most designers of dynamic building skins that reconfigure themselves in changing conditions have utilised mechanical systems. However, when designing for dynamic responsiveness, these systems often involve intricate and high-tech mechanistic joints, actuators and control. This research investigates the possibility of the ‘soft’ form-changing material systems to minimise the use of ‘hard’ mechanical components for kinetic responsive architectural skins. The research goal is to develop a prototype system that can be used to retrofit an existing building with an application of a ‘second skin’ that performs well in various climate conditions and is visually compelling. This approach is tested by the prototype, namely “Curtain”. It serves two fundamental purposes: Comfort and Cosmetic, to improve the existing interior and exterior spatial conditions. As an early proposition, the significance of this research offers a practical method for realising a ‘soft’ transformable architectural skin that synthesises passive cooling, manipulates sunlight and is set as an active shading device. Parametric design is used to explore and simulate these climatic and visual design constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ecaade2011_067
id ecaade2011_067
authors Kontovourkis, Odysseas
year 2011
title Pedestrian Modeling as Generative Mechanism for the Design of Adaptive Built Environment
doi https://doi.org/10.52842/conf.ecaade.2011.850
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.850-858
summary The investigation of the relationship between pedestrian modeling and the built environment is essential in the process of analyzing, evaluating and generating new architectural spaces that can satisfy circulation design conditions and respect the surrounding environment in the best possible way. In order to achieve the direct interaction between the users and the environment, current work attempts to examine how pedestrian models can be used as generative mechanisms for the production of adaptive spaces, which can be optimized according to human movement behavior needs. In this investigation, an existing computer program will be further developed in relation to its ability to inform the environment in an adaptive manner resulting the formation of spaces that can influence and can be influenced by pedestrian movement behavior and hence circulation systems. This can be done by creating new rules of interaction between components, for instance between pedestrians and the geometry of environment, and by taking into account pedestrian movement behavior conditions, as well as functional and morphological architectural design criteria.
wos WOS:000335665500098
keywords Pedestrian modeling; virtual forces; generative design; adaptive built environment
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_029
id caadria2011_029
authors Santo, Yasu; John H. Frazer and Robin Drogemuller
year 2011
title Active buildings: What can we do about buildings that simply stand still?
doi https://doi.org/10.52842/conf.caadria.2011.301
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 301-310
summary This paper presents background of our research and result of our pilot study to find methods for convincing building users to become active building participants. We speculate this is possible by allowing and motivating users to customise and manage their own built environments. The ultimate aim of this research is to develop open, flexible and adaptive systems that bring awareness to building users to the extent they recognise spaces are for them to change rather than accept spaces are fixed and they are the ones to adapt. We argue this is possible if the architectural hardware is designed to adapt to begin with and more importantly if there are appropriate user interfaces that are designed to work with the hardware. A series of simple prototypes were made to study possibilities through making, installing and experiencing them. Ideas discussed during making and experiencing of prototypes were evaluated to generate further ideas. This method was very useful to speculate unexplored and unknown issues with respect to developing user interfaces for active buildings.
keywords Interaction; interface; Building Information; participatory; adaptive
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia11_272
id acadia11_272
authors Dimcic, Milos; Knippers, Jan
year 2011
title Free-form Grid Shell Design Based on Genetic Algorithms
doi https://doi.org/10.52842/conf.acadia.2011.272
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 272-277
summary In the 21st century, as free-form design grows in popularity, grid shells are becoming a universal structural solution, enabling the conflation of structure and skin (façade) into one single element (Kolarevic 2003). This paper presents some of the results of a comprehensive research project focused on the automated design and optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It shows that by combining design and FEM software in an iterative, Genetic Algorithms-based optimization process, stress and deformation in grid shell structures can be significantly reduced, material can be saved and stability enhanced.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
wos WOS:000330322400039
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2011_008
id ecaade2011_008
authors Kolovou, Eleni
year 2011
title Sensitive skin design: a generative approach
doi https://doi.org/10.52842/conf.ecaade.2011.453
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.453-460
summary This paper presents a framework of study of an iterative evolution of a modular component designed in an attempt to simulate material constraints and motional response with the perspective to be multiplied into a dynamic system. The main scope of this project was to investigate the process that maps a territory of possibilities, among which lies the potential architectural solution. In order to explore this field a parametric model has been developed. The simulation of the materials nature has been embedded in the algorithm on a geometry constraint basis in an attempt to simulate the behavior of the system comprised by elements in tension and torsion. A multiplication process of the module was introduced at a following stage of the research focusing on regular tessellations and circle packing on the plane. Responsive performance has been studied on a selected specimen of the evolution given a hypothetic context scenario according to which the scale of the design was set at a façade component level. The resulting responsive permeable skin was presented as a potential design solution among the successive approximations of this algorithm. Along the course of the research the parametric tools were used not only as a medium of synchronous output visualization but also as a mechanism to simulate material properties, structural constrains, environmental data, and worked as stimuli of inspiration driving the overall design process.
wos WOS:000335665500052
keywords Parametric design; generative design; simulation and visualization; responsive skin
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p112
id cf2011_p112
authors Schlueter, Arno
year 2011
title Integrated Design Process for Prefabricated Façade Modules with Embedded Distributed Service Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 419-434.
summary The awareness of the environmental impact of buildings concerning their CO2 emissions, their energy and resource consumption has raised the challenges on building design, construction and operation. Building service systems are among the main contributors to building related emissions. Their consideration already in design is therefore of growing importance. Distributed service systems represent a new paradigm towards the supply of a building with energy and matter. Being small, efficient and networked, they can be distributed within the building fabric to allow an efficiently supply of the building space. Their employment, however, affects the spatial layout, construction and resulting building performance. In order to capture the resulting complex dependencies, a strategy to integrate such systems into the architectural design process is necessary. In this work a design process is proposed, that integrates distributed service systems into building design, dissolving the classical divide between architectural design and service systems layout. Digital modelling and computational methods are employed to create and analyse design solutions, visualize performance criteria and provide the relevant data for the intended digital fabrication process. The process is exemplified using a joint university-industry case study project focusing on parametric façade modules, developed in a seamless digital process from concept to fabrication.
keywords integrated design, design process, performance assessment, digital fabrication, distributed building service systems
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_080
id ecaade2011_080
authors Velasco, Rodrigo; Robles, Daniel
year 2011
title Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates
doi https://doi.org/10.52842/conf.ecaade.2011.539
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.539-548
summary This paper presents the current development of an in-progress academic research project where a particular design problem, that of building envelopes for tropical climates, is parametrically defined and its possible solutions assessed by means of data correlations and virtual simulations. In doing do so, the authors have devised a parametric structure based on factorial definitions whereby environmental, structural and life cycle analyses are taken into consideration to determine the design possibilities subsequently defined in terms of their physical configuration, constituent materials, construction processes and dynamic behaviour. Particular emphasis is placed on the embedded energy and functional performance of the resulting designs. The proposed methodological model is graphically presented, and its practical potential illustrated by a particular case of application. It should be taken into account, however, that this is a work in progress, and only the first step towards theconstruction of a simulation based methodology for architects and designers.
wos WOS:000335665500062
keywords Parametric design; building envelopes; green envelopes; tropical architecture
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20119405
id ijac20119405
authors Koi Khoo, Chin; Flora Salim and Jane Burry
year 2011
title Designing Architectural Morphing Skins with Elastic Modular Systems
source International Journal of Architectural Computing vol. 9 - no. 4, 379-419
summary This paper discusses the issues of designing architectural skins that can be physically morphed to adapt to changing needs.To achieve this architectural vision, designers have focused on developing mechanical joints, components, and systems for actuation and kinetic transformation. However, the unexplored approach of using lightweight elastic form-changing materials provides an opportunity for designing responsive architectural skins and skeletons with fewer mechanical operations. This research aims to develop elastic modular systems that can be applied as a second skin or brise-soleil to existing buildings.The use of the second skin has the potential to allow existing buildings to perform better in various climatic conditions and to provide a visually compelling skin.This approach is evaluated through three design experiments with prototypes, namely Tent, Curtain and Blind, to serve two fundamental purposes: Comfort and Communication.These experimental prototypes explore the use of digital and physical computation embedded in form-changing materials to design architectural morphing skins that manipulate sunlight and act as responsive shading devices.
series journal
last changed 2019/07/30 10:55

_id sigradi2023_108
id sigradi2023_108
authors Passos, Aderson, Jorge, Luna, Cavalcante, Ana, Sampaio, Hugo, Moreira, Eugenio and Cardoso, Daniel
year 2023
title Urban Morphology and Solar Incidence in Public Spaces - an Exploratory Correlation Analysis Through a CIM System
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1655–1666
summary The walkability of open spaces has been highlighted in current discussions about the production of designed environments in urban contexts (Matan, 2011). To contribute to this theme, this work selects the environmental comfort of open spaces as its element of study. The production of urban space was investigated, specifically in regard to urban morphology, understanding that city design directly influences environmental comfort (Jacobs, 1996). This work addresses the geographic context of low latitudes, specifically in hot and humid climate zones of Brazil, and, in this context, according to NBR 15220 (national performance standards), shading is one of the main comfort strategies, so solar incidence was the approached environmental phenomenon. Thus, this work presents a digital system that performs exploratory analysis on the correlations between urban form indicators and environmental performance indicators, specifically solar incidence. The method consists of three steps: urban form modeling (1), indicator measurement (2) and correlation analysis (3). In the first stage, different spatial sections of a city in Brazil were represented in the digital environment (1). This work’s implementation instrument is based on a City Information Modeling framework (Beirao et al., 2012). Visual Programming Interface (VPI) and Geographic Information Systems (GIS) tools were used, in addition to a Relational Database Management System (RDBMS). Then, for each urban clipping, the values of morphological indicators and the incidence of solar radiation were measured (2). Based on the values of the indicators, an exploration of their correlation was carried out by statistical methods (3). The results of the correlation analysis and their correspondent scatter plots are presented. Finally, possible applications of the results for the creation of prescriptive urban planning systems are discussed, seeking to promote a sustainable urban environment.
keywords Urban planning, Environmental comfort, Walkability, Urban morphology, Statistical methods.
series SIGraDi
email
last changed 2024/03/08 14:09

_id ecaade2011_161
id ecaade2011_161
authors Weston, Mark
year 2011
title Anisotropic Operations: A study in directed material weakening for solar shading
doi https://doi.org/10.52842/conf.ecaade.2011.595
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.595-602
summary Deliberately introduced unidirectional material weakening is explored as a means of producing material properties which exploit natural material tendencies rather than as a means to compensate for them. Such anisotropic operations take natural systems as a point of departure for man-made approaches to the augmentation of building performance in the realm of solar shading, but also for the creation of materially complex architectural environments.
wos WOS:000335665500069
keywords Solar shading; materiality; sustainability; biomimicry; anisotropy
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
doi https://doi.org/10.52842/conf.caadria.2011.717
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia11_284
id acadia11_284
authors Ogrydziak; Luke
year 2011
title Tetrahedron Cloud
doi https://doi.org/10.52842/conf.acadia.2011.284
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 284-291
summary The research project, tetrahedron cloud, explores agent-based stochastic behavior as a design tool. It investigates the possibilities for producing volumetric tetrahedral meshes based on the interactions of individual stochastic agents. The research situates itself at the intersection of the visual arts, the physical sciences, and computer science. The basic interest in stochastics comes from the visual arts; the growth simulation approach is borrowed from the natural sciences; and the use of a tetrahedral mesh within C++ comes from computer science. But more generally, the project focuses on architecture’s ongoing engagement with stochastic systems. By embedding extremely specific tendencies within an agent’s behavior, while also allowing for stochastic variation, we can create larger systems that are both in and out of our “control”. This sidesteps the typical limitations of many computational geometry and parametric methods, where there is often an overly deterministic relationship between the input and output of a given system. Such a shift from optimization to behavior inevitably brings up troubling questions of style. Abandoning the search for a “best” solution, or even the articulation of the criteria for such a task, re-opens computational architecture at its deepest levels as a site for design speculation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 16HOMELOGIN (you are user _anon_923626 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002