CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 92

_id acadiaregional2011_031
id acadiaregional2011_031
authors Christenson, Mike
year 2011
title Parametric Variation Revealing Architectural Untranslatability
doi https://doi.org/10.52842/conf.acadia.2011.x.c8q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper describes a recently concluded graduate seminar which tested how form-generative design tactics of algorithmic work could be productively brought to bear on the conceptual analysis of existing buildings. The seminar did not seek to optimize performance or aesthetic value but simply to query the mechanics and consequences of translation as an act. Seminar participants mined existing buildings as sources for parametric rule-sets which were subsequently applied to varying media fields (e. g., physical materials, text, and graphics). This application revealed that specific media resist certain kinds of translation. This peculiar resistance suggested that characteristics of architecture exist which might broadly be called untranslatable.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_003
id acadiaregional2011_003
authors Howe, Nathan
year 2011
title Algorithmic Modeling: Teaching Architecture in Digital Age
doi https://doi.org/10.52842/conf.acadia.2011.x.a0p
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Can a working knowledge of algorithmic modeling augment student understanding of building architecture? This question is fundamental when addressing student design education today. This paper demonstrates that when students apply a reductive process more in line with Newell, Shaw and Simon (Newell, Shaw and Simon 1957), they can break down a complex problem into simpler and simpler terms until the problem can be resolved. This type of reduction can be applied systematically to the parametric-driven form through reverse engineering. In the process of reverse engineering, students begin to connect descriptive geometry with complex form, breaking down the complex form into its simplest parts. This design process of reduction and reverse engineering leads designers to take a more systematic approach to theoretical ideas, at once creating complex constructs while pragmatically attacking the issues of buildable form. This paper will delve into teaching analytical tools so students not only comprehend the input of form-making, but the necessary output to test building and material concepts. Fostering a clear methodology for testing built form within the design process also furthers the student’s development as a problem solver and design innovator.
series ACADIA
last changed 2022/06/07 07:49

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.acadia.2011.114
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ijac20109303
id ijac20109303
authors Meyboom, AnnaLisa
year 2011
title Heavy Design
source International Journal of Architectural Computing vol. 9 - no. 3, 251-258
summary Digital tools in architecture have a powerful capability that we have only begun to explore; the questions to ask of them are perhaps not what they can do but what should we use them for? To date, much of the work done in the area of computational design has been used as elaborate patterning - some have called it ‘ornament’. The significance of this ornament is not only pleasure but in its use of digital patterns to represent our current complex and digital age.This representation in itself is not problematic; however, what is problematic is the lack of other meaningful uses of the digital form-generating tools and their distance from a culture of making. The main failing of our use of digital design (algorithmic or not) in architecture to this point is its inability to translate smoothly from the digital world to the physical world. The main reasons for this difficulty in translation are gravity and inherent material properties. Working with gravity and its physical implications is generally considered the role of the structural engineer; as such, engineers have generally created digital tools in this area.The engineer's methodology analyses a structure based on complex structural analysis programming but in order to do this, a detailed description of the structure must already exist. This is not useful in preliminary stages of design. However, the generation of architecture within an environment, which already includes structural principles, may bring us one step closer to this transition of virtual to physical by including gravity in architectural generation while not diminishing the creative form-generating process. An approach has been proposed which responds with a concept of ‘heavy design’. This type of approach incorporates logics from other disciplines, primarily structural engineering, to inform design. The design process incorporates the structural behavior of a system into the architectural model. Engineering offers a mathematical interpretation of the physical world and this is inherently suited to algorithmic design because it is already in equation form. It can thus be programmed into the architectural form generational software. The variables used in the equations become the variables within the architectural design and this inherently brings the natural physical laws to the architecture through a numerical, algorithmic method. The design produced is not a singular answer but rather a responsive vocabulary of a structural system, which is then employed in design in differing conditions. The architecture produced is both function and ornament, having cultural interpretation but carrying out many engineering tasks: a true parametric architecture.
series journal
last changed 2019/05/24 09:55

_id caadria2011_047
id caadria2011_047
authors Ostwald, Michael J.; Josephine Vaughan and Stephan K. Chalup
year 2011
title Data flow and processing in the computational fractal analysis method
doi https://doi.org/10.52842/conf.caadria.2011.493
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 493-502
summary One of the few quantitative methods available for the consistent analysis of architectural form is the ‘box-counting’ approach to determining the approximate fractal dimension of a plan or elevation. In its computational form this method has been used to analyze the plans and facades of a wide range of buildings. The data points produced are synthesized by the software into a series of fractal dimension (D) values that are in turn compiled in various ways to produce a series of composite results describing a complete building. Once this process is complete the data may be coded with additional information producing a set of mathematical results that describe the form of a building. This paper offers the first complete description of this important analytical process from the point of view of information flow, algorithmic operations, review options and data magnitude. No previous paper has detailed the full scope of the data used in the computational method, or the way in which various stages produce different types of outcomes. The purpose of this paper is to elucidate the way in which this particular computational method, drawing its inspiration from the complexity in natural systems, may be used to process different types of information and produce various forms of quantitative data to support architectural design and analysis.
keywords Fractal analysis; computational analysis
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2011_299
id sigradi2011_299
authors Téllez Bohórquez, Andres
year 2011
title Computación e identidad visual corporativa [Computation and corporate visual identity]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 372-375
summary The adoption of computation in the design process has opened this discipline to new dynamics and challenges. Programming has impacted how designers conceive and produce form, including how corporate identity is designed, consumed and understood. A recent trend in design has introduced logo systems that use multiple iterations of a mark, usually created with a computer algorithm. This article proposes a methodology to use the potential of computation in corporate identity design and a reflection about the role of the designer in this process.
keywords Computation; corporate identity; computer-aided-design; algorithmic logo; fluid identity
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2011_034
id caadria2011_034
authors Wakita, Akira; Akito Nakano and Michihiko Ueno
year 2011
title SMAAD Surface: A tangible interface for smart material aided architectural design
doi https://doi.org/10.52842/conf.caadria.2011.355
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 355-364
summary In this paper, we present Smart Material Aided Architectural Design (SMAAD), the design technique to realize intuitive shape modelling with synchronizing a tangible user interface (TUI) and a 3D CAD system. To realize SMAAD, we first implemented SMAAD Surface, the TUI that imitates the free-form surface. The TUI is a fabric device, in which flex sensors and actuators (shape memory alloys) are embedded. As a designer changes the textile shape using his/her hands, its surface data will be sent to the CAD system through the sensor and a free-form surface can be created in the PC. The operation in the opposite direction is also possible, in which the CAD surface data is sent to the fabric device to dynamically change its shape. SMAAD releases architectural designers from complex GUI operations and visual programming and enables digital model creation through natural manual operations for physical models.
keywords Smart materials; tangible user interfaces; surface modelling; algorithmic design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ijac20109102
id ijac20109102
authors Yeung Wendy K.; Jeremy Harkins
year 2011
title Digital Architecture for Humanitarian Design in Post-Disaster Reconstruction
source International Journal of Architectural Computing vol. 9 - no. 1, 17-32
summary Digital tools and computational design processes are rapidly changing architecture. Nonetheless their applications in humanitarian design remain under researched. Generative algorithmic design is particularly useful in humanitarian design and post disaster reconstruction. Firstly, the extreme conditions in these contexts pose many constraints that can be parametricised and form the basis of a parametric design. Secondly, optimal use of scarce resources are enabled by integrating these interrelated performance requirements. Thirdly, a robust model definition afforded through parametric modelling enables a mass customised design to adjust for different site and user requirements, and most importantly it allows improvements in subsequent design based on community evaluation. As part of an ongoing research in fusing advanced computational techniques in humanitarian architecture, the post-tsunami rebuilding program of Emergency Architects Australia in the Solomon Islands is presented as a case study to identify successes, opportunities and limitations of a system of digital tools.
series journal
last changed 2019/05/24 09:55

_id caadria2017_182
id caadria2017_182
authors Austin, Matthew
year 2017
title The Other Digital - What is the Glitch in Architecture?
doi https://doi.org/10.52842/conf.caadria.2017.551
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 551-559
summary This paper will discuss and investigate the issues with the concept of 'glitch' in architecture. There are currently two definitions that sit in a symbiotic relationship with each other; Moradi's (2004) and Menkman's (2011). This paper will explore the implications of these two approaches, while investigating the possibility of a third, unique definition (the encoded transform), and what effect they have on the possibility for a 'glitch architecture'. The paper will then focus on the glitches' capacity to be disruptive within the design process. In the context of architecture, it has been previously argued that the inclusion of glitches within a design process can easily create a process that does not 'converge' to a desired design outcome, but instead shifts haphazardly within a set of family resemblances (Austin & Perin 2015). Further to this, it will be revealed that this 'divergent' quality of glitches is due to the encoded nature of architectural production.
keywords Glitch aesthetics; Theory; Algorithmic Design; Process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2011_120
id sigradi2011_120
authors Briones, Carolina
year 2011
title Diseño digital y manufactura artesanal, ejemplos de diseño paramétrico en Chile [Digital design and handcrafted manufacturing, examples of parametric design in Chile]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 60-63
summary The present article tracks and attempts to portray the current state of the art, in relation to the application of parametric or algorithmic design in Chilean architecture and design production. These technologies have emerged in the last decades and have become increasingly popular in the international arena. Through the presentation of examples made at different scales, the processes of digital and traditional manufacture used in each work of art are revealed. The difficulties, advantages and virtues of these tools are discussed and addressed from a local educational and professional perspective.
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
doi https://doi.org/10.52842/conf.acadia.2011.170
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2011_116
id ecaade2011_116
authors Koziko_lu, Nilüfer; Kavlak, Emrah
year 2011
title Introducing Architectural Design Foundations Through Algorithmic Design And Experimentations With Materials: A methodology for freshman class in architecture
doi https://doi.org/10.52842/conf.ecaade.2011.070
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.70-76
summary This paper presents a lecture methodology using pattern based and algorithmic design principles for an introductory architectural design course aimed towards students who are not oriented in design practices but in natural sciences. This methodology is built upon eights interconnected steps, starting with analytical pattern extraction from nature - from the unique texture and structure of a plant (seed or fruit) and also from its lifecycle and relation to the existing habitat. The steps include abstract pattern making with the use of software tools and material building of abstracted geometries as standalone structures. Throughout these steps, principles of information design field is demonstrated to improve students’ abilities to analyze visual information.
wos WOS:000335665500007
keywords Pattern; Parametric Design; Design Education; Information Design
series eCAADe
email
last changed 2022/05/01 23:21

_id c04a
id c04a
authors Krause D, Derix C and Gamlesaeter A
year 2011
title The Virtual Building Simulator: a Post-Parametric Spatial Planning Environment
source Proceedings of Construction Applications of Virtual Reality, Weimar, 2011
summary The described research of Fraunhofer IAO and AEDAS CDR examines the potential of post-parametric computational design together with immersive methods like Virtual Reality. The industrial approach of frontloading identifies the early design stage as crucial for all subsequent processes and the overall sustainability of future building projects. There VR together with innovative planning simulation methods allow to manage building models as complex systems for long-term planning reliability from construction to building operation. The Virtual Building Simulator represents a prototype of a design platform where the designer-user can immersive himself via VR into the interactive spatial formation process. The process synthesizes parametric constraints with design intent and algorithmic behavioural logics.
keywords Knowledge-based Processes, Algorithmic Design, Spatial Planning, VRfx
series other
type normal paper
email
more http://aedasresearch.com/files/publications/CONVR_2011_Paper_Virtual_Building_Simulator_finish.pdf
last changed 2012/09/20 17:19

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
doi https://doi.org/10.52842/conf.acadia.2011.300
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2011_015
id ecaade2011_015
authors van der Zee, Aant; de Vries, Bauke
year 2011
title Out of the box design: Pedagogical approach on generative design teaching
doi https://doi.org/10.52842/conf.ecaade.2011.709
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.709-715
summary A traditional design studio is organized round tutors who give the students an assignment, more precisely a design problem which the students have to solve in 12 weeks. Since 2006 we run at our University a design studio which is focused on a new way of thinking in and about architecture. In many aspects the organization differs greatly from the more traditional organized design studios. In the first part of the paper we will discuss the pedagogical organization of ‘our’ studio and how this new way of generative design is used in architectural training. In the second part we will show and discuss some students work, one project will be discussed in more detail. Finally, we will summarize our experience with this design studio and provide some guidelines for successful implementing Generative Design in architectural design teaching.
wos WOS:000335665500082
keywords Generative design; algorithmic design; teaching
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_099
id ecaade2011_099
authors Ahlquist, Sean; Menges, Achim
year 2011
title Methodological Approach for the Integration of Material Information and Performance in the Design Computation for Tension-Active Architectural Systems
doi https://doi.org/10.52842/conf.ecaade.2011.799
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.799-808
summary As computational design processes have moved from representation to simulation, the focus has shifted towards advanced integration of performance as a form defining measure. Performance, though, is often assessed purely on the level of geometry and stratified between hierarchically independent layers. When looking at tension-active membrane systems, performance is integrated across multiple levels and with only the membrane material itself, defining the structural, spatial and atmospheric qualities. The research described in this paper investigates the integrative nature of this type of lightweight structure and proposes methodologies for generating highly articulated and differentiated systems. As material is a critical component, the research focuses on a system-based approach which places priority on the inclusion of material research and parameterization into a behavior-based computational process.
wos WOS:000335665500092
keywords Material behavior; material computation; system; gestalt; tension-active system
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_517396 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002