CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 557

_id acadiaregional2011_003
id acadiaregional2011_003
authors Howe, Nathan
year 2011
title Algorithmic Modeling: Teaching Architecture in Digital Age
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.a0p
summary Can a working knowledge of algorithmic modeling augment student understanding of building architecture? This question is fundamental when addressing student design education today. This paper demonstrates that when students apply a reductive process more in line with Newell, Shaw and Simon (Newell, Shaw and Simon 1957), they can break down a complex problem into simpler and simpler terms until the problem can be resolved. This type of reduction can be applied systematically to the parametric-driven form through reverse engineering. In the process of reverse engineering, students begin to connect descriptive geometry with complex form, breaking down the complex form into its simplest parts. This design process of reduction and reverse engineering leads designers to take a more systematic approach to theoretical ideas, at once creating complex constructs while pragmatically attacking the issues of buildable form. This paper will delve into teaching analytical tools so students not only comprehend the input of form-making, but the necessary output to test building and material concepts. Fostering a clear methodology for testing built form within the design process also furthers the student’s development as a problem solver and design innovator.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_011
id acadiaregional2011_011
authors Carraher, Erin
year 2011
title Parameters of a Digital Design Foundation
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.l3h
summary Students can begin utilizing the computer as a tool in the first year of their education in the same way they begin drawing, modeling, and diagramming as a basis for developing progressively deeper understandings of the capabilities and limitations of these instruments and their particular roles within the process of design. This hypothesis is being tested in Virginia Tech’s School of Architecture + Design over the course of the 2010-11 academic year by seeding a series of digital workshops into the beginning design curriculum.
series ACADIA
last changed 2022/06/07 07:49

_id ijac20109303
id ijac20109303
authors Meyboom, AnnaLisa
year 2011
title Heavy Design
source International Journal of Architectural Computing vol. 9 - no. 3, 251-258
summary Digital tools in architecture have a powerful capability that we have only begun to explore; the questions to ask of them are perhaps not what they can do but what should we use them for? To date, much of the work done in the area of computational design has been used as elaborate patterning - some have called it ‘ornament’. The significance of this ornament is not only pleasure but in its use of digital patterns to represent our current complex and digital age.This representation in itself is not problematic; however, what is problematic is the lack of other meaningful uses of the digital form-generating tools and their distance from a culture of making. The main failing of our use of digital design (algorithmic or not) in architecture to this point is its inability to translate smoothly from the digital world to the physical world. The main reasons for this difficulty in translation are gravity and inherent material properties. Working with gravity and its physical implications is generally considered the role of the structural engineer; as such, engineers have generally created digital tools in this area.The engineer's methodology analyses a structure based on complex structural analysis programming but in order to do this, a detailed description of the structure must already exist. This is not useful in preliminary stages of design. However, the generation of architecture within an environment, which already includes structural principles, may bring us one step closer to this transition of virtual to physical by including gravity in architectural generation while not diminishing the creative form-generating process. An approach has been proposed which responds with a concept of ‘heavy design’. This type of approach incorporates logics from other disciplines, primarily structural engineering, to inform design. The design process incorporates the structural behavior of a system into the architectural model. Engineering offers a mathematical interpretation of the physical world and this is inherently suited to algorithmic design because it is already in equation form. It can thus be programmed into the architectural form generational software. The variables used in the equations become the variables within the architectural design and this inherently brings the natural physical laws to the architecture through a numerical, algorithmic method. The design produced is not a singular answer but rather a responsive vocabulary of a structural system, which is then employed in design in differing conditions. The architecture produced is both function and ornament, having cultural interpretation but carrying out many engineering tasks: a true parametric architecture.
series journal
last changed 2019/05/24 09:55

_id acadiaregional2011_029
id acadiaregional2011_029
authors Bell, Brad; Kevin Patrick McClellan, Andrew Vrana
year 2011
title Reconfiguring Collaboration by Computational Means Tex-Fab: A new model for collaborative engagement
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.f7u
summary TEX-FAB is a non-profit organization founded between three universities in Texas with the primary function of connecting design professionals, academics, and manufactures interested in digital fabrication. The three co-directors established TEX-FAB as a collective action, one that attempts to combine divergent interests and capabilities, for the purpose of strengthening the regional discourse around digital fabrication and parametric design. The three primary avenues for accomplishing this goal are set out as Theoria (Lectures / Exhibitions), Poiesis (Workshops) and Praxis (Competition). We see this type of effort as a new paradigm focused on providing a network of affiliated digital fabrication resources, and a platform for education/ exchange on issues of parametric modeling. It is our position that TEX-FAB engages the new and growing awareness of a regional and global hybridization. We seek to leverage the burgeoning global knowledge base to produce a more specific and contextual dialogue within the region we operate, teach, and practice.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_027
id acadiaregional2011_027
authors Meniru, Kene
year 2011
title Modeling Building Information in a Parametric Environment
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.b9s
summary The building design stage starts with an early effort by the architect to create a sketch which embodies the fundamental building knowledge that forms the basis for all later work. This knowledge is mostly lost in current building design practice procedures where the sketch is reduced to individual building components such as walls, floors, etc. By the time the building is constructed, new efforts have to be made to document information about the building necessary to control and maintain it during operation. This paper represents the next step to a Ph.D. study that describes the early building process and important features to support. It presents a sample design session from the study and based on observations from this session, it identifies and describes important digital objects that can be used to capture building knowledge in the sketch.
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2011_065
id sigradi2011_065
authors Moreno Sperling, David; Rodrigues de Oliveira, Marina
year 2011
title Experimentação projetual no ensino de arquitetura apoiada por tecnologia de fabricação digital [Design Experimentation in the teaching of architecture supported by digital manufacturing technology]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 398-401
summary This article presents and discusses a teaching experience carried out with the first class of the course of Architecture and Urbanism of the Institute of Architecture and Urbanism, University of Sao Paulo (Sao Carlos, Brazil), with the initial goal of learning the software Rhinoceros. "Forms in motion" was structured in four key questions: conceptual investigation, design experimentation, use of digital devices of modeling and prototyping, relationships between spatial creation and the city.
keywords Formal emergence; design investigation; Rhinoceros; rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadiaregional2011_004
id acadiaregional2011_004
authors Sanguinetti, Paola; Chad Kraus
year 2011
title Thinking in Parametric Phenomenology
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.i0d
summary This project explores the relationship between phenomenology and parametric design. Architects have made compelling arguments for a phenomenological understanding of architecture, rooted in the subject and in direct experience, for which the notion of intentionality plays a central role. However, the inherent subjectivity of phenomenology has remained a barrier to its use as an explicit method of design thinking. On the other hand, the wide spread use of parametric modeling, as a tool to capture design intent, has led to theorizing parameterization in architecture.
series ACADIA
last changed 2022/06/07 07:49

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id sigradi2012_333
id sigradi2012_333
authors da Silva, Isabelle Maria Mensato; Viz, Simone Helena Tanoue
year 2012
title Ensino de Arquitetura e Urbanismo com auxilio de ferramentas digitais [Teaching Architecture and Urbanism with help of digital tools]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 522-526
summary This article aims to discuss the importance of freehand drawings in the architectural projective process in the context of the digital age, through the use of tablets. It is intended to identify how these drawings, using tablets, keep the perception and the personal dash of each one. This research aims not only to review and update the drawing´s disciplines in the architecture courses - its practices and procedures - but also to discuss the actual role of representation - analogical or digital - and its interaction with others disciplines. The first research, done in 2011, indicated possibilities of interface with CAD, Revit and Sketch-up. The second part, in course in this year, 2012, is trying to experiment the use of tablets in three others disciplines: History of Architecture and Urbanism I, Landscaping and Project I, in the Instituto de Arquitetura e Urbanismo da USP, São Carlos, Brasil.
keywords freehand drawing, graphic, tablet, digital media
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadiaregional2011_010
id acadiaregional2011_010
authors Senske, Nicholas
year 2011
title A Curriculum for Integrating Computational Thinking
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.f6s
summary For architectural educators, a challenge of teaching digital design is maintaining a relevant curriculum amidst an increasing array of constantly evolving software and tools. This paper describes a curriculum proposal under review at the University of North Carolina at Charlotte, which attempts to address this situation through the integration of computational thinking in studios and seminars.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_012
id acadiaregional2011_012
authors Karle, David; Brian M. Kelly
year 2011
title Parametric Thinking
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.d0b
summary Digital tools are currently being used in design schools across the country. This paradigm in both education and practice of architecture is continually changing the profession, from the way in which design is conceived, represented, documented, and fabricated. Parametric design can be defined as a series of questions to establish the variables of a design and a computational definition that can be utilized to facilitate a variety of solutions. Parametric thinking is a way of relating tangible and intangible systems into a design proposal removed from digital tool specificity and establishes relationships between properties within a system. It asks architects to start with the design parameters and not preconceived or predetermined design solutions.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_030
id acadiaregional2011_030
authors Ra, Seung
year 2011
title Parametric Translations
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.u1v
summary The aim of this paper is to understand the outcomes of parametric methods in beginning design projects and their impact on rethinking digital technology in current design education. In order to realize comprehensive results, in this paper i) conceptual and formative projects are presented to describe specifications of a parametric design at OSU School of Architecture; ii) for OSU SOA, we plot pedagogical objectives and evaluate how we have interpreted and applied novel digital technology into the design process; and iii) Cultivate parametric design as systemic and organizational design. Along with unit-based, component design, expand the use of digital tools to become the discipline and domain of the creative culture. How digital tools are integrated into early design education through a collaborative studio project will be the focus of the study. Through the experimental exercises, we can begin to explore how the digital process can be integrated at a fundamental level.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_022
id acadiaregional2011_022
authors Scheer, David R.
year 2011
title Architectural Drawing- A Prospective Requiem
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.p2o
summary Drawing has been inextricably entwined with architecture since ancient times. Today, architectural drawing is moribund if not already dead, replaced by technologies that encode and store design information in digital databases. This change has taken place with unbelievable rapidity, especially viewed from an historical perspective. This paper examines how drawing has affected our fundamental ideas about architecture and what effects its demise may have on architecture in the future. The aim is to appreciate what drawing has meant for architecture and to assess the latter's drawing-less prospects, hence a "prospective requiem".
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_018
id acadiaregional2011_018
authors Vrana, Andrew; Joe Meppelink
year 2011
title Perforating Material Performance: Ceiling Cloud
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.j6t
summary The focus of this project was to design a ceiling system within a new Materials Resource Center in the Architecture Building that would embody the potential of parametric design and digital fabrication to rethink a generic interior architectural system. The instructors and students in a combined design studio and digital fabrication seminar developed a Ceiling Cloud that clips on to a modified suspended ceiling grid using lightweight folded aluminum panels that are designed to incrementally change dimension and drape into the space below. Constraints and variables within the parametric models allowed for the optimization and extraction of 150 unique panels that are also perforated with their own individual pattern. The variations in the folded surface disburse and dissipate sound through refraction and absorption created by the corrugation in the panels and their perforation. The holes are also calibrated as a gradient to allow more light to penetrate in the center of the space away from the perimeter walls. The project was prototyped by the students as the College of Architecture and partially realized with the help of industrial partners in Houston. The studio was co-directed with Visiting Critic Scott Marble who provided a framework to conduct the studio’s exploration and several successful projects as precedent.
series ACADIA
last changed 2022/06/07 07:49

_id caadria2017_182
id caadria2017_182
authors Austin, Matthew
year 2017
title The Other Digital - What is the Glitch in Architecture?
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 551-559
doi https://doi.org/10.52842/conf.caadria.2017.551
summary This paper will discuss and investigate the issues with the concept of 'glitch' in architecture. There are currently two definitions that sit in a symbiotic relationship with each other; Moradi's (2004) and Menkman's (2011). This paper will explore the implications of these two approaches, while investigating the possibility of a third, unique definition (the encoded transform), and what effect they have on the possibility for a 'glitch architecture'. The paper will then focus on the glitches' capacity to be disruptive within the design process. In the context of architecture, it has been previously argued that the inclusion of glitches within a design process can easily create a process that does not 'converge' to a desired design outcome, but instead shifts haphazardly within a set of family resemblances (Austin & Perin 2015). Further to this, it will be revealed that this 'divergent' quality of glitches is due to the encoded nature of architectural production.
keywords Glitch aesthetics; Theory; Algorithmic Design; Process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2011_120
id sigradi2011_120
authors Briones, Carolina
year 2011
title Diseño digital y manufactura artesanal, ejemplos de diseño paramétrico en Chile [Digital design and handcrafted manufacturing, examples of parametric design in Chile]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 60-63
summary The present article tracks and attempts to portray the current state of the art, in relation to the application of parametric or algorithmic design in Chilean architecture and design production. These technologies have emerged in the last decades and have become increasingly popular in the international arena. Through the presentation of examples made at different scales, the processes of digital and traditional manufacture used in each work of art are revealed. The difficulties, advantages and virtues of these tools are discussed and addressed from a local educational and professional perspective.
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
doi https://doi.org/10.52842/conf.acadia.2011.114
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
doi https://doi.org/10.52842/conf.acadia.2011.300
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_857392 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002