CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 555

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_194
id sigradi2011_194
authors Garagnani, Simone; Manferdini, Anna Maria
year 2011
title Virtual and augmented reality applications for Cultural Heritage
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 556-559
summary The purpose of this paper is to show the results of a research aimed at investigating the potential of digital technologies in order to provide instruments that allow to share information about the Cultural Heritage, which Museums and Institutions are called to preserve and promote. Our project's aim is finding the most suitable procedure to acquire archaeological artefacts, build their digital replica together with 3D printed prototypes and derive simplified models to be visualized through stereoscopic devices, allowing the simultaneous viewing of real and digital 3D data through an augmented reality environment, portable to mobile devices as well.
keywords 3D recontructions; stereoscopic visualization; augmented reality; virtual museum; rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:52

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id cf2011_p141
id cf2011_p141
authors Khan,Mohammad Ashraf; Dong Andy
year 2011
title Using Geo-Located Augmented Reality for Community Evaluation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 701-720.
summary Conventional practices of two-dimensional representation of three-dimensional objects remain an impediment to end-user engagement in participatory urban design. An alternative is to harness geo-located augmented reality (GAR) technology to embed life-sized virtual three-dimensional images at the actual site of proposed interventions. This format offers closest to real-life visualizations for end-users, enabling them to firstly comprehend and then express feelings concerning future proposals. This paper presents an iPhone web-app that capitalizes on the Layar browser’s GAR interface to tip the economies of scale in favor of intimately attached users of public space, rather than often remotely detached clients and their commissioned designers. Walk-around virtual images of public space designs can be viewed and commented via iPhones by the public. It further allows users to display their own ideas as alternatives, thus in effect serving as an instrument for advancement of CAAD-enabled participative environmental design in general and the idea of reclamation of authorship of public space in particular. This paper briefly describes the development of a prototype, including its preliminary evaluation, and then highlights a study to determine the 3D rendering performance parameters of GAR technology, as the core component of the idea. The paper concludes with a discussion of future implications.
keywords Participative Environmental Design, Collaborative Architectural Design, CAAD, IPhone, End-User Engagement
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_020
id caadria2011_020
authors Lonsing, Werner and Peter Anders
year 2011
title Three-dimensional computational structures and the real world
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2011.209
summary In this paper, we describe a system of composite images to design virtual three-dimensional structures in an outdoor environment. The system, called AmbiViewer, consists of a modeler for three-dimensional on-site sketching, and overlapping locative technologies to orient virtual objects in a real-space, real-time setting. The system employs both GPS orientation and a visual marker system to provide a realistic and interactive augmented reality interface. While it is still under development, the authors believe it can bridge the gap between sketching on site, and creating virtual models in the office.
keywords Augmented reality; mixed reality, locative design; interactive mModeler; visualisation; GPS; cybrids
series CAADRIA
email
last changed 2022/06/07 07:59

_id cdrf2023_235
id cdrf2023_235
authors Mohsen Kafaei, Jane Burry, Mehrnoush Latifi, Joseph Ciorciari
year 2023
title Designing a Systematic Experiment to Investigate the Effect of Ambient Smell on Human Emotions in the Indoor Space; Introducing a Mixed-Method Approach
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_20
summary Studies have indicated that built environments affect all aspects of human life such as emotion, perception, behavior, health, and well-being (Cooper et al. 2011). Built environments are formed from the combination and juxtaposition of visible and invisible environmental variables. In recent years, common techniques such as virtual reality, augmented reality, digital twins, and artificial intelligence have enabled researchers in the field of architecture and urban design to simulate environmental conditions to investigate the impacts of environmental variables on humans. However, the studies conducted in this field of human comfort are mostly focused on the impact of environmental variables such as form, temperature, humidity, and sound, and in fewer studies, up-to-date methods and technologies have been used to simulate and investigate the impact of smell on humans. Most of the studies that have investigated the effect of ambient smell on humans, carried out in the discipline of architecture and urban design, have used traditional tools and methods (questionnaire, interview, observation) rather than advanced technology and tools drawing on neuroscientific knowledge and technique to measure the effectiveness of the ambient smell on human. They have used unmasked scents or real-world environments rather than being able to simulate environmental conditions. This article highlights the significance and necessity of employing simulation methods to investigate the impact of environmental smells on humans. Additionally, it presents the methodology of an experiment for studying the effect of indoor environment smells (with a case study of an office environment in the initial phases) on human emotions, utilizing a mixed-method approach. Analysis of some parts of the data from this experiment showed that exposure to the fragrance of the jasmine flower pleasant (flower) and the odor of the rotten orange peel (unpleasant) can cause changes in the electroencephalography (EEG) power across different bands among participants.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2011_097
id ecaade2011_097
authors Rua, M. Helena; Alvito, Pedro A.; Ramos, Duarte; Fernandes, Bruno; Martins, Susana
year 2011
title Modelling as Communication: The use of 3D models for developing architectural ideas
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.859-867
doi https://doi.org/10.52842/conf.ecaade.2011.859
wos WOS:000335665500099
summary Regardless of its size or scope, the preparation of an Architectural Project, is perfectly well defined. The first phase of conception, drawn up according to the statement of intentions provided by the Owner of the Work (preliminary Program), usually is the only one in the whole process which draws on the abilities of the Author of the Project. Thus, with the aim of speeding up this process, an experimental model which can be used as a tool for negotiation between stakeholders in a project of Architecture has been developed. This implies giving priority to the graphic aspects of the model, such as visualisation, texturing, manipulation and automatic data updating. What is left to be developed is the desire to associate sensorial information to these scenic models – sound, smell and time – and to study the means of converting the results of this informal communication into documents that may come to be used in the subsequent phases of the Architectural Project.
keywords Architecture; modelling, virtual reality; visualization
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109101
id ijac20109101
authors Moloney, Jules; Bharat Dave
year 2011
title From abstraction to being there: mixed reality at the early stages of design
source International Journal of Architectural Computing vol. 9 - no. 1, 1-16
summary We discuss the use of multiple design representations to enhance decision making at the early stages of design. Our interest is how the context in which design decisions are made can be extended by two interrelated approaches: (1) the incorporation of the temporal; (2) through the concurrent evaluation of qualitative representations and quantitative information. Outcomes from a practice survey and observations from design studios are used to inform the development of mixed reality (MixR) technology, to enable the applications to reflect architecture specific modes of design praxis. We propose two approaches - studio MixR and site MixR - reflecting the distinction between typical studio based design process and the requirements of a formal design review by the design team and stakeholders. Prototype applications have been implemented and a number of projects have been undertaken to illustrate some of the potential of mixed reality for architecture and urban design. These focus on the early stages of design, from the abstraction of parametric design to on site design reviews undertaken with augmented reality visualization.
series journal
last changed 2019/05/24 09:55

_id sigradi2011_332
id sigradi2011_332
authors Berns, Torben; Nguyen, Philam
year 2011
title The Subject on the Table: Augmented Reality and the Technical Image
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 571-574
summary This paper approaches the dilemma of the technical image as it relates to an understanding of the constructed subject. Proceeding from a condition identified in film and popular culture, the authors construct an investigative, graduate level workshop around a collaborative interface and archive. The project was premised upon the notion that a new ground, based in visualization processes and incorporating existing technologies, must be practically and critically explored to make any sense at all of the subjectivity already coeval with these technologies.
keywords Technical image; subjectivity; collaborative work; sensus communis
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2011_031
id caadria2011_031
authors Fukuda, Tomohiro; Kensuke Kitagawa and Nobuyoshi Yabuki
year 2011
title A study of variation of normal of polygons created by point cloud data for architectural renovation field
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 321-330
doi https://doi.org/10.52842/conf.caadria.2011.321
summary Acquiring current 3D space data of cities, buildings, and rooms rapidly and in detail has become indispensable. When the point cloud data of an object or space scanned by a 3D laser scanner is converted into polygons, it is an accumulation of small polygons. When object or space is a closed flat plane, it is necessary to merge small polygons to reduce the volume of data, and to convert them into one polygon. When an object or space is a closed flat plane, each normal vector of small polygons theoretically has the same angle. However, in practise, these angles are not the same. Therefore, the purpose of this study is to clarify the variation of the angle of a small polygon group that should become one polygon based on actual data. As a result of experimentation, no small polygons are converted by the point cloud data scanned with the 3D laser scanner even if the group of small polygons is a closed flat plane lying in the same plane. When the standard deviation of the extracted number of polygons is assumed to be less than 100, the variation of the angle of the normal vector is roughly 7 degrees.
keywords Point cloud; 3D laser scanner; physical space; virtual reality; polygon optimization
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2011_126
id sigradi2011_126
authors García Amen, Fernando; Barber, Gabriela
year 2011
title Sueñan las ovejas con androides humanos? Una aproximación a los orígenes cinematográfico-literarios de la Realidad Aumentada [Do Sheep Dream of Human Androids? An approach to film-literary sources of Augmented Reality]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 245-248
summary Augmented Reality is one of the fields of technological development most currently used for various purposes. However, little is known about the genesis of AR in the collective imagination. It is perfectly legitimate to argue that the AR pays special tribute to fantasy literature and the film genre of Sci-Fi. Based on the definition of Azuma, AR must meet three conditions which can be traced in various fiction works of the twentieth century, even before the AR was conceptually defined. This work is proposed to investigate the literary and cinematic sources that give rise to the concept of AR.
series SIGRADI
email
last changed 2016/03/10 09:52

_id ascaad2023_091
id ascaad2023_091
authors Haddad, Naif
year 2023
title From Digital Heritage Documentation to 3D Virtual Reconstruction and Recreation for Heritage Promotion and Reinterpretation: The Case of the iHeritage Project
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 7-23.
summary In the last two decades, the digital age Information and Communication Technologies (ICT) development and concerns combined with rapid technology have permitted the dissemination of different digital applications (including digital documentation, virtual reality (VR), augmented reality (AR), mixed reality (MR), digital gaming, and holograms etc.) oriented toward past, present and future communication using digital three-dimensional audio-visual content. Today, we must acknowledge that 3D virtual 3D reconstruction and recreation has become an established way to build, understand, reinterpret, and promote Cultural Heritage (CH). The virtual 3D reconstruction world and multimedia industry are often considered potential marketing channels for World Heritage Sites (WHS) and heritage tourism. 3D digital/virtual reconstruction merges and embodies subjectivity in one process, playing an attractive role in heritage tourism destinations and creating image experiences, providing the first enjoyable interpretation and information for most audiences. Based on the EU-funded iHERITAGE project ICT Mediterranean platform for the UNESCO CH, this paper attempts to examine some insights into constructing the optimistic image of heritage promotion and tourism in the context of CH as it flows through both physical and virtual spaces to give a glimpse of the future of virtual reconstruction. It illustrates the development of the concepts and practice, challenges and opportunities, advantages and disadvantages, and the negative and the positive sides of the related issues of only 3D digital reconstructions, and some issues concerning the ethics based on the International Chartres and Conventions mainly in the field of scientific visualisation, such as the London Charter (2009) and Seville Principles (2011). Finally, as a practical dimension, it presents some representative examples of 3D digital/virtual reconstruction of characteristic monuments of the WHS of Nabataean Petra in Jordan for the first time.
series ASCAAD
email
last changed 2024/02/13 14:40

_id sigradi2011_267
id sigradi2011_267
authors Hamuy Pinto, Eduardo; Galaz, Mirtha
year 2011
title Preguntas Aumentadas: medios enriquecidos y el acto de preguntar [Augmented questions: Rich media and asking]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 448-451
summary Tutorials are widely used for learning technical mattersin architecture and design courses. This is a case study of questions from a student and answers provided by a teacher. The communication medium used was Screenr©, a web application for creating short screencasts. A sequence of screencasts was analyzed from a qualitative perspective, using Media Richness Theory and an e-learning model as framework. Ambiguity and Equivocality are managed through a rich medium that allows communication of precise data and paralinguistic cues. Visual deictic gestures (from the users) and visual cues provided by the interfaceare fundamental for building understanding.
keywords Teaching; videotutorials; media richness; screencasts; qualitative analysis
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2011_008
id ecaade2011_008
authors Kolovou, Eleni
year 2011
title Sensitive skin design: a generative approach
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.453-460
doi https://doi.org/10.52842/conf.ecaade.2011.453
wos WOS:000335665500052
summary This paper presents a framework of study of an iterative evolution of a modular component designed in an attempt to simulate material constraints and motional response with the perspective to be multiplied into a dynamic system. The main scope of this project was to investigate the process that maps a territory of possibilities, among which lies the potential architectural solution. In order to explore this field a parametric model has been developed. The simulation of the materials nature has been embedded in the algorithm on a geometry constraint basis in an attempt to simulate the behavior of the system comprised by elements in tension and torsion. A multiplication process of the module was introduced at a following stage of the research focusing on regular tessellations and circle packing on the plane. Responsive performance has been studied on a selected specimen of the evolution given a hypothetic context scenario according to which the scale of the design was set at a façade component level. The resulting responsive permeable skin was presented as a potential design solution among the successive approximations of this algorithm. Along the course of the research the parametric tools were used not only as a medium of synchronous output visualization but also as a mechanism to simulate material properties, structural constrains, environmental data, and worked as stimuli of inspiration driving the overall design process.
keywords Parametric design; generative design; simulation and visualization; responsive skin
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_154
id ecaade2011_154
authors Piga, Barbara E. A.; Morello, Eugenio; Signorelli, Valerio
year 2011
title The experience of an academic simulation laboratory: The use of visual simulations for education and research
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.734-742
doi https://doi.org/10.52842/conf.ecaade.2011.734
wos WOS:000335665500085
summary An overview of the research activities of a university simulation laboratory is presented. The mission of the laboratory is to anticipate the design and to support the evaluation process of urban design projects from a perceptual viewpoint through the use of digital and physical models. We have research and educational purposes. Founded five years ago, the laboratory has implemented different simulation tools, often combining existing techniques and finding new applications of existing ones. In particular, we focused our interest on visual perception tools, investigating the use of physical models and digital ones, and combining them in different ways in order to enhance the experience offered by the perceptual simulation.
keywords Visual simulation; city modelling; augmented reality; game engine; simulation laboratory
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p152
id cf2011_p152
authors Plume, Jim; Mitchell John
year 2011
title An Urban Information Framework to support Planning, Decision-Making & Urban Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 653-668.
summary This paper reports on a 2-year research project undertaken in collaboration with a state planning authority, a major city municipal council and a government-owned development organisation. The project has involved the design of an urban information model framework with the aim of supporting more informed urban planning by addressing the intersection where an individual building interfaces with its urban context. This adopted approach enables new techniques that better model the city and its processes in a transparent and accessible manner. The primary driver for this project was the challenge provided by the essential incompatibility between legacy GIS (geographic information system) datasets and BIM (building information model) representations of the built form. When dealing with urban scale information, GIS technologies use an overlay mapping metaphor linked to traditional relational database technologies to identify features or regions in the urban landscape and attach attribute data to those in order to permit analysis and informed assessment of the urban form. On the other hand, BIM technologies adopt an object-oriented approach to model the full three-dimensional characteristics of built forms in a way that captures both the geometric and physical attributes of the parts that make up a building, as well as the relationships between those parts and the spaces defined by the building fabric. The latter provides a far richer semantic structure to the data, while the former provides robust tools for a wide range of urban analyses. Both approaches are widely recognised as serving well the needs of their respective domains, but there is a widespread belief that we need to reconcile the two disparate approaches to modelling the real world. This project has sought to address that disjunction between modelling approaches. The UrbanIT project concentrated on two aspects of this issue: the development of a framework for managing information at the precinct and building level through the adoption of an object-oriented database technology that provides a platform for information management; and an exploration of ontology tools and how they can be adopted to facilitate semantic information queries across diverse data sources based on a common urban ontology. This paper is focussed on the first of those two agendas, examining the context of the work, the challenges addressed by the framework and the structure of our solution. A prototype implementation of the framework is illustrated through an urban precinct currently undergoing renewal and redevelopment, finishing with a discussion of future work that comes out of this project. Our approach to the implementation of the urban information model has been to propose extensions to ISO/PAS 16739, the international standard for modelling building information that is commonly known as IFC (Industry Foundation Classes). Our reason for adopting that approach is primarily our deep commitment to the adoption of open standards to facilitate the exchange of information across the built environment professions, but also because IFC is based on a robust object schema that can be used to construct a internet-accessible database able, theoretically, to handle the vast quantity of data needed to model urban-scale information. The database solution comes with well-established protocols for handling data security, integrity, versioning and transaction processing or querying. A central issue addressed through this work is concerned with level of detail. An urban information model permits a very precise and detailed representation of an urban precinct, while many planning analyses rely on simplified object representations. We will show that a key benefit of our approach is the ability to simultaneously maintain multiple representations of objects, making use of the concept of model view definitions to manage diverse analysis needs.
keywords urban information modelling, geographic information systems, city models, interoperability, urban planning, open standards
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20119402
id ijac20119402
authors Toth, Bianca; Flora Salim, Jane Burry, John Frazer, Robin Drogemuller and Mark Burry
year 2011
title Energy-Oriented Design Tools for Collaboration in the Cloud
source International Journal of Architectural Computing vol. 9 - no. 4, 339-359
summary Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design.As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation.A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly.This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
series journal
last changed 2019/07/30 10:55

_id cf2011_p120
id cf2011_p120
authors Veliz, Alejandro; Medjdoub Benachir, Kocaturk Tuba
year 2011
title Bridging the Gap in Constraint-Based Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 133-148.
summary Mass customization is one of the most promising computational developments in the AEC industry. Despite recent advances in the production of research-based knowledge, the professional practices lack of a consistent and permanent technology adoption scheme and remain as a very resilient and fragmented industry. This work is a part of an ongoing research project developing guidelines for improving both physical and virtual modeling processes within an architectural design context. Here, we present a customizable model of a space layout explorer. The implementation of the user-driven solution-finding process is based on constraint technology embedded in Autodesk’s Revit® 2011 macros tools, commonly used in the professional practice. The aim of this work is to demonstrate a practical use of a small constraint-based system on software of widespread use. Even though there is still a lack of building information, the model has already several applications in the definition a floor plan layout and in the comparison of several instances of the design solution in the 3D user view. User-driven modifications are not made directly through the 3D model, but through different explicit text tags that describe each parameter on 2D views -although a real time 3D visualization of the model is also available-. The main findings are discussed as guidelines for further research on the end-user involvement on a ‘creative mass customization’ scheme. Also, the implementation of visual aids such as text tags during the customization process can bridge some technical obstacles for the development of interfaces for constraint-based mass customization systems. Before the final discussion, some limitations on the use of this model are described.
keywords collaborative design, mass customization, reality gap
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_611579 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002