CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 552

_id ecaade2011_117
id ecaade2011_117
authors Albayrak, Canan; Tunçer, Bige
year 2011
title Performative architecture as a guideline for transformation: Defense Line of Amsterdam
doi https://doi.org/10.52842/conf.ecaade.2011.501
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.501-510
summary Performance as an architectural design paradigm has been emerging during the recent years. We have developed an understanding that we formalized as a taxonomy for performative architecture that considers performance from three points of view: health, safety and security performance; functional and efficiency performance; and psychological, social, cultural, and esthetic performance. This paper focuses on a design project that explores these ideas as a performative architecture proposal. The project focuses on the architectural transformation of the Defense Line of Amsterdam, 41 forts, as a green belt. This transformation considers a holistic approach of defining a general method and guideline. We developed a series of parametric models for the definition and generation of designs. The first model computes an urbanization level for each fort. Consequently, models are developed in 4 stages: regional design, urban design, building design, and production of a scale model, and these are applied in an iterative manner to reach design outcomes for the project.
wos WOS:000335665500058
keywords Performative architecture; performance evaluation; taxonomy; parametric modeling
series eCAADe
email
last changed 2022/05/01 23:21

_id acadiaregional2011_003
id acadiaregional2011_003
authors Howe, Nathan
year 2011
title Algorithmic Modeling: Teaching Architecture in Digital Age
doi https://doi.org/10.52842/conf.acadia.2011.x.a0p
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Can a working knowledge of algorithmic modeling augment student understanding of building architecture? This question is fundamental when addressing student design education today. This paper demonstrates that when students apply a reductive process more in line with Newell, Shaw and Simon (Newell, Shaw and Simon 1957), they can break down a complex problem into simpler and simpler terms until the problem can be resolved. This type of reduction can be applied systematically to the parametric-driven form through reverse engineering. In the process of reverse engineering, students begin to connect descriptive geometry with complex form, breaking down the complex form into its simplest parts. This design process of reduction and reverse engineering leads designers to take a more systematic approach to theoretical ideas, at once creating complex constructs while pragmatically attacking the issues of buildable form. This paper will delve into teaching analytical tools so students not only comprehend the input of form-making, but the necessary output to test building and material concepts. Fostering a clear methodology for testing built form within the design process also furthers the student’s development as a problem solver and design innovator.
series ACADIA
last changed 2022/06/07 07:49

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_025
id acadiaregional2011_025
authors Bum Kim, Jong ; Mark J. Clayton, Wei Yan
year 2011
title Parametric Form-Based Codes: Incorporation of land-use regulations into Building Information Models
doi https://doi.org/10.52842/conf.acadia.2011.x.l7j
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This project describes investigations into whether parametric modeling using a Building Information Modeling (BIM) platform can represent the provisions and constraints of Form-Based Codes (FBCs). BIM software environments couple 3D modeling with parametric form generation and rich semantics. Further capabilities of an Application Programming Interface that supports Object-Oriented Programming (OOP) results in a very powerful environment for expressing planning and design concepts. While these capabilities were developed under the intention of supporting building design, we hypothesize that they can support planning rules and regulations that are found in FBCs. If our approach is successful, future planning departments will be able to provide architects and urban designers with a FBC that is implemented as a BIM software toolkit, better integrating the planning phase of a project into the building design phase.
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2011_416
id sigradi2011_416
authors Castro, Carlos; Vega, Juan Ignacio; Al-haddad, Tristán
year 2011
title Botterfold, cubierta celosía autosoportante [Botterfold, self-supporting sun break cover]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 206-209
summary Botterfold is a reflective self-supporting mono component sun break cover that research the architectural design and materialization using digital technologies of parametric modeling and fabrication. Its structure is made up of 1200 differentiated aluminum components milling, folded, assembled and riveted. It is designed in Grasshopper plug-in for Rhinoceros 3d modeling. It generates a responsive definition to the variation of
series SIGRADI
email
last changed 2016/03/10 09:48

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‚Äňtagging‚Äô) and assignment of various other attributes to model objects have significant limitations ‚Äě especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability ‚Äě both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects ‚Äě as an alternative or complement to common assigned-attribute-based methods ‚Äě and on the other hand visual analytic techniques ‚Äě in contrast to existing, relatively static tabular and "physical" views ‚Äě which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods‚Äô positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods‚Äô refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models‚Äô present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p073
id cf2011_p073
authors Nasirova, Diliara; Erhan Halil, Huang Andy T, Woodbury Robert, Riecke Bernhard E.
year 2011
title Change Detection in 3D Parametric Systems: Human-Centered Interfaces for Change Visualization
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 751-764.
summary The research on current parametric modeling systems concerns mainly about the underlying computational technology and designs produced; and emphasizes less human factors and design tasks. We observe users being challenged in interacting with these systems regardless of their expertise level. In these systems, user’s attention is divided on system-imposed actions such as tool selection and set-up, managing obscured views, frequent view manipulation, and switching between different types of representations. In essence, control of the system can become more demanding than the design task itself. We argue that this unbalanced emphasis inhibits one of the most important functions of parametric design: agility in exploration of design alternatives by applying frequent user-introduced or system-generated changes on the parametric design models. This compounded by the effect of cognitive limitations such as change blindness and shifts in locus of attention hinders change control and imposes an extra cognitive load in design. In this paper, we made a first step in developing a set of heuristics that is going to present how designers’ change control and detection can be improved. We experimented with three interfaces that control and visualize changes on three different compositions in relation to the designer’s locus of attention: on-model, peripheral and combined views. We measured designers’ performance as the number of changes detected, number of trials, and time required to complete each change detection task. The results support our hypothesis that change blindness significantly slows down and overloads design thinking, and thus should not be ignored. Furthermore, an interesting finding shows that visualizations on the visual periphery can equally support change detection as on-model visualizations, but it is significantly easier and faster to detect changes when they are visualized in both views. These findings can guide us to develop better interfaces in 3D parametric systems.
keywords parametric design, change detection, change blindness, user-centered design, interface ergonomics, HCI, CAD, visualization
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
doi https://doi.org/10.52842/conf.acadia.2011.152
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id acadia11_226
id acadia11_226
authors Salim, Flora; Jaworski, Przemyslaw; Kaftan, Martin; Friedrich, Eva; Urquiza, Rafael; Oh, Suhee; Fihn, John; Galaso, Jose Luis; Roa, Rafael; Banke, Tore; Bak, Jakob; Kalvo, Raul; Di Leo, Stefan; Madeddu, Davide; Albuquerque, Joao; Gillespie, David; Řstergaard, Jacob
year 2011
title Informing Architecture and Urban Modeling with Real-world Data on 3D Tangible Interfaces and Augmented Displays
doi https://doi.org/10.52842/conf.acadia.2011.226
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 226-233
summary The proliferation of online and digital data in our world yields unprecedented opportunities for connecting physical and digital parametric models with live data input and feedback. Tangible interfaces and augmented displays provide theatrical settings for designers to visualize real-world data and experience realtime feedback while manipulating physical and digital models on the table. This paper proposes a new approach to design workflow, where physical model and virtual model can be interconnected and informed in realtime by multiple analytical datasets and live data streams. Using 3D scanning, blob detection, and multi-touch techniques, multidimensional tangible interfaces and augmented displays presented in this paper demonstrate a powerful new approach for designing and interacting with physical models, materials, and environmental data.
series ACADIA
type normal paper
last changed 2022/06/07 07:56

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id 10cc
id 10cc
authors Alves, Gilfranco; Nojimoto, Cynthia
year 2011
title Strings Pavilion: design process
source V!RUS, [online] n. 6. [online] Available at: . [Accessed: 30 December 2011].
summary The paper presents the design process of Strings Pavilion developed during the Architectural Association School of Architecture's Visiting School Workshop occurred in Sao Paulo city, in July, 2011. The pavilion is an outcome from a collective creation process of five persons team working in an immersive way during ten days; they explored several possibilities of experimentation and hybrid processes from researches about materials features and behaviors as well as parametric software. Fundamental concepts such as loop, feedback and responsivity from Second Order Cybernetic and Systems Theory were included and applied in the creation process.
keywords design processes; Second Order Cybernetic; Complex Systems, parametric design; digital fabrication; interactivity.
series other
type normal paper
email
more http://www.nomads.usp.br/virus/virus06/?sec=6&item=2&lang=en
last changed 2012/01/09 07:27

_id sigradi2011_423
id sigradi2011_423
authors Chiarella, Mauro; Dalla Costa, Matias
year 2011
title Patrones Generativos Dinámicos (URDIR.Lab). Estrategias proyectuales paramétricas simples para el ejercicio profesional cotidiano [Dynamic Generative Patterns (URDIR.Lab). Simple Parametric Design Strategies for Everyday Practice]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 210-214
summary The international architecture of the past decade adds parametric design to the project as a new variable dynamic strategy in the design process. Generative patterns meet a way of achieving parameterization from the computational geometry. The experimental developments of URDIR.Lab (FADU-UNL) group, ranges from: the current projective exercises with dynamic materials and forms to the development of simple formulas applied to everyday practice. The proposed challenge is to merge the local available technological resources - pre-industrial and industrial - with the ideation systems of post-industrial technologies.
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadiaregional2011_031
id acadiaregional2011_031
authors Christenson, Mike
year 2011
title Parametric Variation Revealing Architectural Untranslatability
doi https://doi.org/10.52842/conf.acadia.2011.x.c8q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper describes a recently concluded graduate seminar which tested how form-generative design tactics of algorithmic work could be productively brought to bear on the conceptual analysis of existing buildings. The seminar did not seek to optimize performance or aesthetic value but simply to query the mechanics and consequences of translation as an act. Seminar participants mined existing buildings as sources for parametric rule-sets which were subsequently applied to varying media fields (e. g., physical materials, text, and graphics). This application revealed that specific media resist certain kinds of translation. This peculiar resistance suggested that characteristics of architecture exist which might broadly be called untranslatable.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p147
id cf2011_p147
authors Erbas, Irem; Bittermann Michael, Stouffs Rudi
year 2011
title Use of a Knowledge Model for Integrated Performance Evaluation for Housing (re)design Towards Environmental Sustainability: A Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 281-296.
summary This paper focuses on the development of a knowledge model in the context of energy efficiency and indoor climate interventions, their impacts on each other and on architectural design preferences (for instance architectural expression or any spatial functionality aspect) via an existing house case study. In addition, it attempts to discuss how this type of model can be a reference for a decision support tool and be applied to the (re)design of dwellings. The model is considered to provide an integral knowledge base for the design professional both to evaluate existing designs and to use it as a support during design and decision making in order to reach the best possible solution, with optimal performance in terms of indoor comfort, energy-efficiency and overall design performance. In other words, its aim is to enable the assessment of the performance of the end result with respect to design choices, beforehand. In this paper, design performance is modeled by means of fuzzy logic operations. It is a method to deal with subjective and vague requirements such as low energy consumption, low overheating risk, high comfort, etc. The method of intelligent information processing is explained and a partial application is presented.
keywords energy efficiency, indoor comfort, design decision support, knowledge modeling, performance evaluation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
doi https://doi.org/10.52842/conf.caadria.2011.717
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2011_193
id sigradi2011_193
authors Garagnani, Simone; Mingucci, Roberto
year 2011
title A.I.M. Informative Archives for architectural renovation
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 94-97
summary The information technology applied to the architectural surveys makes the environment documentation pos- sible through multimedia data, which can be processed using a "Multimedia Informative Archive" (A.I.M.), designed for Institutions interested in cultural heritage preservation. An A.I.M. system can manage analytical information embedded into digital databases, referencing a visual exploration path to several technical data, documenting the context in which a monument, or an historical building, is placed. The framework can be ported to mobile devices in order to allow a wide number of data gathering stations, connected to the same central archive, making easier browsing and storing architectural information.
keywords Digital 3D modeling; architectural information technology; virtual heritage documentation; multimedial building database; immersive data modeling
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaade2015_ws-robowood
id ecaade2015_ws-robowood
authors Hornung, Philipp; Johannes Braumann, Reinhold Krobath, Sigrid Brell-Cokcan and Georg Glaeser
year 2015
title Robotic Woodcraft: Creating Tools for Digital Design and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2015.2.033
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 33-36
summary Robotic Woodcraft is a transdisciplinary, arts-based investigation into robotic arms at the University for Applied Arts Vienna. Bringing together the craftsmen of the Department for Wood Technology, the geometers of the Department for Arts and Technology, the young industrial design office Lucy.D and the roboticists of the Association for Robots in Architecture, the research project explores new approaches on how to couple high-tech robotic arms with high-end wood fabrication. In the eCAADe workshop, participants are introduced to KUKA|prc (parametric robot control, Braumann and Brell-Cokcan, 2011) and shown approaches on how to create their own digital fabrication tools for customized fabrication processes involving wood.
wos WOS:000372316000004
keywords Robotic woodcraft; Arts-based research; Robotic fabrication; Visual programming; Parametric robot control
series eCAADe
last changed 2022/06/07 07:50

_id caadria2012_018
id caadria2012_018
authors Huang, Weixin and Weiguo Xu
year 2012
title Parametric urban design exploration in a graduate design studio
doi https://doi.org/10.52842/conf.caadria.2012.559
source Proceedings of the 17th International Conference on Computer Aided Architectural Design Research in Asia / Chennai 25-28 April 2012, pp. 559–568
summary A city is a typical complex system that composed of billions of individual factors that interact with each other, and evolve dynamically. Parametric design method considers design conditions as the parameters of form generation, and introduces bottom-up emergent process in computers into architectural design. Because of such mechanism, it is supposed that parametric design can be applied in urban design problems, and brings rationality and creativity into urban design. In the year 2011, a joint design studio of Princeton University, Tokyo University and Tsinghua University is carried out. Graduate students from the three universities dive into the design of a micro-city that expands from Haneda airport in Tokyo bay area. The design studio in Tsinghua lasts for 16 weeks, and the students are asked to develop their ideas in a parametric way, and explore the potential of bottom-up generation of urban design using computer tools.
keywords Parametric urban design; Haneda airport; complex system; urban form generation
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2011_092
id ecaade2011_092
authors Hulin, Jaroslav; Pavlicek, Jiri; Kaftan, Martin
year 2011
title Parametric bus stop shelters in rural areas: Automating custom design
doi https://doi.org/10.52842/conf.ecaade.2011.485
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.485-490
summary This paper describes the first stage of an applied research project that explores parametric design strategies in a context of rural bus stop shelters. The aim of the research is to propose a possible method for improving current state of public infrastructure in rural locations of the Czech Republic. The research project examines, in a practical way, how advanced design techniques and new technologies could help architects and designers participate in some areas of the building industry that have been out of reach of professional designers. Rural bus stop shelters in Czech Republic serve as an example of one particular ‘unreachable’ area. During the first stage of the research (described in this paper), we developed a parametric system of design and production of a bus stop shelter and we commissioned a fully functional prototype to be built. In the outlook of the research, participation of users in the design process is outlined.
wos WOS:000335665500056
keywords Parametric design; mass customization; participatory design; bus stop shelters
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_226110 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002