CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 405

_id acadia11_72
id acadia11_72
authors Menges, Achim
year 2011
title Integrative Design Computation: Integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions
doi https://doi.org/10.52842/conf.acadia.2011.072
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 72-81
summary In contrast to most other building materials, wood is a naturally grown biological tissue. Today, the organic nature of wood is recognized as a major advantage. Wood is one of the very few naturally renewable, fully recyclable, extremely energy efficient and CO2-positive construction materials. On the other hand, compared to industrially produced, isotropic materials, the inherent heterogeneity and differentiated material makeup of wood’s anatomic structure is still considered problematic by architects and engineers alike. This is due to the fact that, even today, most design tools employed in architecture are still incapable of integrating and thus instrumentalizing the material properties and related complex behavior of wood. The research presented in this paper focuses on the development of a computational design approach that is based on the integration of material properties and characteristics. Understanding wood as a natural composite system of cellulose fibers embedded in a lignin and hemicelluloses matrix characterized by relatively high strain at failure, that is high load-bearing capacity with relatively low stiffness, the particular focus of this paper is the investigation of how the bending behavior of wood can become a generative design driver in such computational processes. In combination with the additional integration of the possibilities and constraints of robotic manufacturing processes, this enables the design and production of truly material-specific and highly performative wood architecture. The paper will provide a detailed explanation of such an integrative approach to design computation and the related methods and techniques. This is complemented by the description of three specific research projects, which were conducted as part of the overall research and all resulted in full scale prototype structures. The research projects demonstrate different approaches to the computational design integration of material behavior and robotic manufacturing constraints. Based on a solution space defined by the material itself, this enables novel ways of computationally deriving both material-specific gestalt and performative capacity of one of the oldest construction materials we have.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
doi https://doi.org/10.52842/conf.acadia.2011.082
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2011_013
id ecaade2011_013
authors Fleischmann, Moritz; Lienhard, Julian; Menges, Achim
year 2011
title Computational Design Synthesis: Embedding Material Behaviour in Generative Computational Processes
doi https://doi.org/10.52842/conf.ecaade.2011.759
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.759-767
summary This paper presents strategies for the design of bending-active structures through the introduction of modern computational design methods, exploring their architectural potential through contemporary means of design, engineering and robotic manufacturing. As a case study the ICD/ITKE research pavilion’s information modeling process is depicted: how form-finding experiments guided the development of various models that synthesize data for design, simulation, analysis and fabrication. The paper explains the integration of relevant material information into generative computational design processes and concludes by comparing the resultant data models with a scan of the built prototype.
wos WOS:000335665500088
keywords Computational Design; Bending-Active Structures; Robotic Fabrication; Computer-Aided Manufacturing; Information Modeling
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_132
id acadia11_132
authors MacDowell, Parke; Tomova, Diana
year 2011
title Robotic Rod-bending: Digital Drawing in Physical Space
doi https://doi.org/10.52842/conf.acadia.2011.132
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 132-137
summary This paper details preliminary project-based design research that emphasizes the development of tools and processes in tandem with the development of ideas and forms. Amid increasingly mechanized fabrication processes, this project injects the human as code-writer and tool-builder, asserting authorship within the modes of production themselves. The initial output from this foray, wavePavilion is an architectural installation generated by computer algorithms and built using custom digital fabrication technology. Completed in June 2010, the project is located on the grounds of the University of Michigan Taubman College of Architecture and Urban Planning. wavePavilion has a footprint of 20x30 feet and stands 14 feet tall, containing over a kilometer of 1/4-inch diameter steel rod.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id acadia11_122
id acadia11_122
authors Pigram, David; McGee, Wes
year 2011
title Formation Embedded Design: A methodology for the integration of fabrication constraints into architectural design
doi https://doi.org/10.52842/conf.acadia.2011.122
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 122-131
summary This paper presents a methodology for the integration of fabrication constraints within the architectural design process through custom written algorithms for fabrication. The method enables the translation from three-dimensional geometry, or algorithmically produced data, into appropriately formatted machine codes for direct CNC fabrication within a single CAD modeling environment. This process is traditionally one-way with part files translated via dedicated machine programming software (CAM). By integrating the toolpath creation into the design package, with an open framework, the translation from part to machine code can be automated, parametrically driven by the generative algorithms or explicitly modeled by the user. This integrated approach opens the possibility for direct and instantaneous feedback between fabrication constraints and design intent. The potentials of the method are shown by discussing the computational workflow and process integration of a diverse set of fabrication techniques in conjunction with a KUKA 7-Axis Industrial Robot. Two-dimensional knife-cutting, large-scale additive fabrication (foam deposition), robot-mounted hot-wire cutting, and robot-assisted rod-bending are each briefly described. The productive value of this research is that it opens the possibility of a much stronger network of feedback relations between formational design processes and material and fabrication concerns.
keywords robotic fabrication; multi-axis; file-to-factory, open-source fabrication, parametric modeling, computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ecaade2011_058
id ecaade2011_058
authors Schindler, Christoph; Espinosa, Margarita Salmerón
year 2011
title ZipShape Mouldless Bending II: A Shift from Geometry to Experience
doi https://doi.org/10.52842/conf.ecaade.2011.477
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.477-484
summary “ZipShape is a universal method to fabricate single curved panels from any plain material without moulds” was the first statement of a paper presented at the Antwerp eCAADe conference in September 2008 (Schindler, 2008). In contrast, the paper at hand introduces ZipShape as a highly specific composite combining different materials and their characteristics. Between those two texts, a paradigm shift took place – from abstract geometrical concept to experiencing the inseparable relation of form and material behaviour. This second step of ZipShape-research was initiated by Swiss design office schindlersalmerón through several workshops with Fachschule für Holztechnik Hamburg, CITA at Royal Academy of the Fine Arts Copenhagen, Bern University of Applied Sciences BFH–AHB Biel and The Detmold School of Architecture and Interior Design.
wos WOS:000335665500055
keywords Mouldless Bending; Wood; Parametric Modelling; Digital Fabrication; Unrolling
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2015_ws-robowood
id ecaade2015_ws-robowood
authors Hornung, Philipp; Johannes Braumann, Reinhold Krobath, Sigrid Brell-Cokcan and Georg Glaeser
year 2015
title Robotic Woodcraft: Creating Tools for Digital Design and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2015.2.033
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 33-36
summary Robotic Woodcraft is a transdisciplinary, arts-based investigation into robotic arms at the University for Applied Arts Vienna. Bringing together the craftsmen of the Department for Wood Technology, the geometers of the Department for Arts and Technology, the young industrial design office Lucy.D and the roboticists of the Association for Robots in Architecture, the research project explores new approaches on how to couple high-tech robotic arms with high-end wood fabrication. In the eCAADe workshop, participants are introduced to KUKA|prc (parametric robot control, Braumann and Brell-Cokcan, 2011) and shown approaches on how to create their own digital fabrication tools for customized fabrication processes involving wood.
wos WOS:000372316000004
keywords Robotic woodcraft; Arts-based research; Robotic fabrication; Visual programming; Parametric robot control
series eCAADe
last changed 2022/06/07 07:50

_id sigradi2011_378
id sigradi2011_378
authors Moretti Meirelles, Célia Regina; Dinis, Henrique; Collet e Silva, Tiago Azzi; Dias, Alan
year 2011
title A aplicação da modelagem em elementos finitos na concepção das estruturas em madeira e sua aplicação em projetos de habitação em madeira [The application of finite element modeling in the design of timber structures and their application in housing projects]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 520-523
summary The search for sustainable buildings is one of the most important phenomena of this century. Wood is a renewable material light, presents a grand synthesis of carbon recovery, its construction process is considered dry construction, it is composed of prefabricated parts for easy assembly.The research examines the application and digital models as tools in the design of timber structures and demonstrate the potential of digital modeling processes in particular the application of the tools in the structure, serving as support for the project in several phases, it allows the model analysis as a whole, showing stresses and strains.
keywords Housing; timber; finite element
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2011_000
id caadria2011_000
authors Herr, Christiane M.; Ning Gu, Stanislav Roudavski and Marc A. Schnabel
year 2011
title CAADRIA2011: Circuit bending, breaking and mending
doi https://doi.org/10.52842/conf.caadria.2011
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, 773p.
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2011_035
id ecaade2011_035
authors Krieg, Oliver David; Dierichs, Karola; Reichert, Steffen; Schwinn, Tobias; Menges, Achim
year 2011
title Performative Architectural Morphology: Robotically manufactured biomimetic finger-joined plate structures
doi https://doi.org/10.52842/conf.ecaade.2011.573
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.573-580
summary Performative Architectural Morphology is a notion derived from the term Functional Morphology in biology and describes the capacity of an architectural material system to adapt morphologically to specific internal constraints and external influences and forces. The paper presents a research project that investigates the possibilities and limitations of informing a robotically manufactured finger-joint system with principles derived from biological plate structures, such as sea urchins and sand dollars. Initially, the material system and robotic manufacturing advances are being introduced. Consequently, a performative catalogue is presented, that analyses both the biological system’s basic principles, the respective translation into a more informed manufacturing logic and the consequent architectural implications. The paper concludes to show how this biologically informed material system serves to more specifically respond to a given building environment.
wos WOS:000335665500066
keywords Robotic Manufacturing; Biomimetics; Parametric Design; Wood Joints; Plate Structures
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_017
id ecaade2011_017
authors Achten, Henri; Koszewski, Krzysztof; Martens, Bob
year 2011
title What happened after the “Hype” on Virtual Design Studios?: Some Considerations for a Roundtable Discussion
doi https://doi.org/10.52842/conf.ecaade.2011.023
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.23-32
summary The issue of collaborative design has been elaborated extensively within the framework of previous CAAD–conferences. Today, an appreciation for traditional attitudes and methods can be observed, but interestingly, a mixture of approaches is also noticeable (computational techniques used in low–tech fabrication environments, for example). This allows for a round–table survey of the current state–of–the–art focused on experiences related to distant learning in the architectural curriculum. To make VDS viable, not only are technological solutions necessary, but so are social (among people) and professional (ways of behavior) ones. In this round–table we aim to identify critical factors of success (or failure).
wos WOS:000335665500001
keywords Education; architectural curriculum; blended learning; collaborative design; VDS
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_099
id ecaade2011_099
authors Ahlquist, Sean; Menges, Achim
year 2011
title Methodological Approach for the Integration of Material Information and Performance in the Design Computation for Tension-Active Architectural Systems
doi https://doi.org/10.52842/conf.ecaade.2011.799
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.799-808
summary As computational design processes have moved from representation to simulation, the focus has shifted towards advanced integration of performance as a form defining measure. Performance, though, is often assessed purely on the level of geometry and stratified between hierarchically independent layers. When looking at tension-active membrane systems, performance is integrated across multiple levels and with only the membrane material itself, defining the structural, spatial and atmospheric qualities. The research described in this paper investigates the integrative nature of this type of lightweight structure and proposes methodologies for generating highly articulated and differentiated systems. As material is a critical component, the research focuses on a system-based approach which places priority on the inclusion of material research and parameterization into a behavior-based computational process.
wos WOS:000335665500092
keywords Material behavior; material computation; system; gestalt; tension-active system
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ascaad2016_046
id ascaad2016_046
authors Albarakat, Reem; Gehan Selim
year 2016
title Radicalism vs. Consistency - The Cyber Influence on Individuals’ Non-Routine Uses in the Heritage Public Spaces of Cairo
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 451-460
summary Since the emergence of the concept of user-generated content websites – Web 2.0, Internet communications have developed as a powerful personal and social phenomenon. Many Internet applications have become partially or entirely related to the concept of social network; and cyberspace has become a space about ‘us’ not ‘where’ we are. This paper investigates the theoretical grounds of the effect of cyber experience on changing the individuals’ uses of the public spaces, and sustaining this change through maintaining the ties and reciprocal influence between actions in physical and cyber spaces. It aims at examining the impact of cyber territories on the perception, definition and effectiveness of personal space within different circumstances; and its role in changing the uses of spaces where people used to act habitually. The personal space, here, will be represented as the core of both: change and consistency – the space of bridging the reciprocal effect of cyber and physical counterparts, which is transformed through the experience of physical events mediated into the cyberspace. The paper is part of a study which looks at the case of Tahrir Square during the Egyptian political movement in 2011. We will compare the activists’ actions and practices in the Square during different events of non-routine use of the square and its surroundings. The case study will show the level of consistency in the features of the produced personal space within different waves of the revolutionary actions for all that different circumstances, motivations and results.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2011_117
id ecaade2011_117
authors Albayrak, Canan; Tunçer, Bige
year 2011
title Performative architecture as a guideline for transformation: Defense Line of Amsterdam
doi https://doi.org/10.52842/conf.ecaade.2011.501
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.501-510
summary Performance as an architectural design paradigm has been emerging during the recent years. We have developed an understanding that we formalized as a taxonomy for performative architecture that considers performance from three points of view: health, safety and security performance; functional and efficiency performance; and psychological, social, cultural, and esthetic performance. This paper focuses on a design project that explores these ideas as a performative architecture proposal. The project focuses on the architectural transformation of the Defense Line of Amsterdam, 41 forts, as a green belt. This transformation considers a holistic approach of defining a general method and guideline. We developed a series of parametric models for the definition and generation of designs. The first model computes an urbanization level for each fort. Consequently, models are developed in 4 stages: regional design, urban design, building design, and production of a scale model, and these are applied in an iterative manner to reach design outcomes for the project.
wos WOS:000335665500058
keywords Performative architecture; performance evaluation; taxonomy; parametric modeling
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 20HOMELOGIN (you are user _anon_595766 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002