CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 559

_id ascaad2023_091
id ascaad2023_091
authors Haddad, Naif
year 2023
title From Digital Heritage Documentation to 3D Virtual Reconstruction and Recreation for Heritage Promotion and Reinterpretation: The Case of the iHeritage Project
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 7-23.
summary In the last two decades, the digital age Information and Communication Technologies (ICT) development and concerns combined with rapid technology have permitted the dissemination of different digital applications (including digital documentation, virtual reality (VR), augmented reality (AR), mixed reality (MR), digital gaming, and holograms etc.) oriented toward past, present and future communication using digital three-dimensional audio-visual content. Today, we must acknowledge that 3D virtual 3D reconstruction and recreation has become an established way to build, understand, reinterpret, and promote Cultural Heritage (CH). The virtual 3D reconstruction world and multimedia industry are often considered potential marketing channels for World Heritage Sites (WHS) and heritage tourism. 3D digital/virtual reconstruction merges and embodies subjectivity in one process, playing an attractive role in heritage tourism destinations and creating image experiences, providing the first enjoyable interpretation and information for most audiences. Based on the EU-funded iHERITAGE project ICT Mediterranean platform for the UNESCO CH, this paper attempts to examine some insights into constructing the optimistic image of heritage promotion and tourism in the context of CH as it flows through both physical and virtual spaces to give a glimpse of the future of virtual reconstruction. It illustrates the development of the concepts and practice, challenges and opportunities, advantages and disadvantages, and the negative and the positive sides of the related issues of only 3D digital reconstructions, and some issues concerning the ethics based on the International Chartres and Conventions mainly in the field of scientific visualisation, such as the London Charter (2009) and Seville Principles (2011). Finally, as a practical dimension, it presents some representative examples of 3D digital/virtual reconstruction of characteristic monuments of the WHS of Nabataean Petra in Jordan for the first time.
series ASCAAD
email
last changed 2024/02/13 14:40

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
doi https://doi.org/10.52842/conf.caadria.2011.175
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p083
id cf2011_p083
authors Calderon, Dominguez, Emmanuel Ruffo, Hirschberg Urs
year 2011
title Towards a Morphogenetic Control of Free-Form Surfaces for Designers
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 165-180.
summary The present paper discusses a novel computational design strategy for approximating architectural free form geometry with discrete planar elements by using morphogenetic patterns. We report on an ongoing research project [1], which is focused on the design of flat ornamental tessellations by using computational geometry for the discretization of curved forms rather than manufacturing curvy elements, which typically increase cost. The significance of our approach lies in the fact that it allows the designer to progressively embrace the constructive constraints and their esthetic potential already in the design stage and to follow them through to actual fabrication.
keywords morphogenetic geometry, design strategies, user-interactiveness, design control, flat tessellations, ornamental structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
doi https://doi.org/10.52842/conf.acadia.2011.316
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id ecaade2011_118
id ecaade2011_118
authors Leitão, António; Santos, Luís
year 2011
title Programming Languages for Generative design: Visual or Textual?
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.549-557
doi https://doi.org/10.52842/conf.ecaade.2011.549
wos WOS:000335665500063
summary In this paper we compare visual and textual programming languages for generative design. We argue that, in the past, this comparison has been flawed and that it is now time to reconsider the potential of the textual programming paradigm but using modern programming languages and development environments specifically targeted to the generative design domain. We present VisualScheme as a prime example of such language and we compare it with the most used visual programming language in the generative design field.
keywords Generative design; Visual Programming Languages; Textual Programming Languages; Interactive Development Environments
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
doi https://doi.org/10.52842/conf.acadia.2011.300
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id fb59
id fb59
authors Schnabel, Marc Aurel; Chen, Rui Irene
year 2011
title Design Interaction via Multi-touch
source Computer Science Cooperative Design, Visualization, and Engineering, CDVE 2011, Y. Luo (Ed.): Lecture Notes in Computer Science, 2011, Volume 6874/2011, 14-21
summary We present a multi-touch-tabletop tool for design-collaborations and -communication tasks employing three-dimensional digitalized models. Our system allows users from various disciplines to communicate and share their ideas by manipulating the reference and their own input simultaneously by simply using intuitive gestures. Haptic and proprioceptive perception of tangible representations are perceived and understood more readily whereby our system provides an increased potential to compensate for the low spatial cognition of its users. Our integration of combining both model-based and participatory approaches with multi-touch tabletop system setups differs considerably from conventional visual representations for collaborative design. Since the multi-touch design interaction allows users to engage intuitively within virtual design environments, it is presenting a next generation of common graphical user interfaces.
keywords Multi-touch, collaboration, interaction, haptic, design
series book
type normal paper
email
more http://www.springerlink.com/content/y4k7w218359g257q/
last changed 2011/10/22 04:59

_id acadia11_270
id acadia11_270
authors Swackhamer, Marc
year 2011
title From Post- to Plus-Digital
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 270-271
doi https://doi.org/10.52842/conf.acadia.2011.270
summary The 2011 ACADIA Conference theme positions architecture’s present condition as “post-digital.” This term calls to question the relevance of an organization like ACADIA, whose focus is precisely on the digital in architecture. Paradoxically, it is the work of ACADIA and digitally-oriented designers that has facilitated the gradual dissolution of the digital. In reality, we of course know that the computer has never been more present and relevant to architecture than it is today. The barriers to entry are lower than they’ve ever been. Digital technology is more pervasive and flexible. But, its ubiquitous integration has rendered the computer itself, with its legacy of opaque user interfaces and inaccessible language, ostensibly transparent. Through this transparency, an array of designers and collaborators previously relegated to the sidelines of computation discourse are now active participants in it. The papers in this session point to five ways in which the boundaries between the digital and non-digital, between architecture and non-architecture, are quickly eroding, and thereby allowing each to influence the other in profound and surprising ways.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:56

_id cf2011_p024
id cf2011_p024
authors Tidafi, Temy; Charbonneau Nathalie, Khalili-Araghi Salman
year 2011
title Backtracking Decisions within a Design Process: a Way of Enhancing the Designer's Thought Process and Creativity
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 573-587.
summary This paper proposes a way computer sciences could contribute to stimulate the designer’s reflexive thought. We explore the possibility of making use of backtracking devices in order to formalize the designer’s thought process. Design, as a process of creating an object, cannot be represented by means of a linear timeline. Accordingly, the backtracking processes we are discussing here are not based on a linear model but rather on a non-linear structure. Beyond the notion of undoing and redoing commands within CAD packages, the backtracking process is seen as a way to explore and record several alternate options. The branches of the non-linear model can be seen as pathways made of sequential decisions. The designer creates and explores these pathways while making tentative moves towards an architectural solution. Within the design process, backtracking enables the designer to establish and act on a network of interrelated decisions. This notion is fundamental. It is quite obvious that information, in order to be meaningful, must occupy a specific place within an informational network. A data, separated from its context, is devoid of interest. By the same token, a decision takes on significance solely in combination with other decisions. In this paper, we examine what kinds of decisions are involved within a design process, how they are connected, and what could be the best ways to formalize the relationships. Our goal is to experiment ways that could enable the designer and his/her collaborators to get a clearer mental picture of the network of decisions aforementioned. The non-linear model can be seen as a graph structure. The user moves wherever he/she wants through the branches of the structure to establish the network of decisions or to get reacquainted with a previous design process. As a matter of fact, it can act in both ways: to reassess or to confirm a decision. On the one hand, the designer can go back to previous states, reconsider past choices, and eventually modify them. On the other hand, he/she can move forward and revisit a given sequence of decisions, so as to recapture the essence of a previous design process. It goes without saying that knowledge regarding the design process is constructed by the designer from his/her own experiences. Since the designer’s perception evolves as time goes by, the network of decisions constitutes a model that is continuously questioned and restructured. The designer does not elaborate solely an architectural object, but also an evolving model formalizing the way he/she achieved his/her aim. As Le Moigne (1995) pointed out, the model itself produces knowledge; afterwards, the designer can examine it so as to get a clearer mental picture of his/her own cognitive processes. Furthermore, it can be used by his/her collaborators in order to understand which thread of ideas led the designer to a given visual result, and eventually resume or reorient the design process. In addition to reflecting on the ideological implications inherent to this questioning, we take into account the feasibility of such a research project. From a more technical point of view, in this paper we will describe how we plane to take up the challenge of elaborating a digital environment enabling backtracking processes within graph structures. Furthermore, we will explain how we plane to test the first trial version of the new environment with potential users so as to observe how they respond to it. These experiments will be conducted in order to verify to what extend the methods we are proposing are able to i) enhance the designer’s creativity and ii) increase our understanding of designer’s thought process.
keywords backtracking, design process, digital environments, problem space, network of decisions, graph structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_366
id sigradi2011_366
authors Braida, Frederico; Nonima, Vera L.
year 2011
title A representação das cidades na era da cultura digital: ampliação, consumo e produção das cidades no ciberespaço [The representation of cities in the era of digital culture: expansion, consumption and production of cities in cyberspace ]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 320-323
summary This article presents a study on the representation of cities in the era of digital culture and aims to show how the phenomenon of self-production is present in the websites studied. At the end, we conclude that cities (through city marketing), local government (through advertising and through the creation of an identity) and citizens (through selfbranding), they create a rhetorical itself and constitute itself as brands. Therefore, we conclude that cybercities has been more an extended space of consumption and production of cities, municipalities and citizens.
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2011_108
id ecaade2011_108
authors Celani, Gabriela; Beirão, José N.; Duarte, José P.: Vaz, Carlos
year 2011
title Optimizing the “characteristic structure”: Combining shape grammars and genetic algorithms to generate urban patterns
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.491-500
doi https://doi.org/10.52842/conf.ecaade.2011.491
wos WOS:000335665500057
summary The present paper is part of an undergoing research that aims at developing software that can generate urban plans, based on contemporary urban design concepts, in an optimized way. As a design method, the project proposes the use of the trilogy formulation/ generation/evaluation, which starts with an outline of the design requirements, proceeds with the definition of generative procedures that can result in these requirements, and follows with the evaluation of the generated designs. The paper describes the development of a computer program that implements some of Marshall’s evaluation methods, and further elaborates them to define generative criteria and to optimize the resulting designs with GA techniques. The program aims at generating what Marshall calls a “characteristic structure”, a type of urban fabric that is usually found in vernacular urban fabrics.
keywords Generative design; urban design; genetic algorithms; shape grammars
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_023
id caadria2011_023
authors Champion, Erik M. and Andrew Dekker
year 2011
title Indirect biofed architecture: Strategies to best utilise biofeedback tools and interaction metaphors within digital architectural environment
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2011.241
summary This paper explains potential benefits of indirect biofeedback used within interactive virtual environments, and reflects on an earlier study that allowed for the dynamic modification of a virtual environment’s graphic shaders, music and artificial intelligence (of Non Playing Characters) based on the biofeedback of the player. It then examines both the potential and the issues in applying biofeedback (already effective for games) to digital architectural environments, and suggests potential uses such as personalization, object creation, atmospheric augmentation, filtering, and tracking.
keywords Virtual worlds; biofeedback; sensors; empathy theory
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac20119404
id ijac20119404
authors Champion, Erik; Andrew Dekker
year 2011
title Biofeedback and Virtual Environments
source International Journal of Architectural Computing vol. 9 - no. 4, 377-395
summary This paper explains potential benefits of indirect biofeedback used within interactive virtual environments, and reflects on an earlier study that allowed for the dynamic modification of a virtual environment’s graphic shaders, music and artificial intelligence, based on the biofeedback of the player. The aim was to determine which augmented effects aided or discouraged engagement in the game. Conversely, biofeedback can help calm down rather than stress participants, and attune them to different ways of interacting within a virtual environment. Other advantages of indirect biofeedback might include increased personalization, thematic object creation, atmospheric augmentation, filtering of information, and tracking of participants’ understanding and engagement. Such features may help designers create more intuitive virtual environments with more thematically appropriate interaction while reducing cognitive loading on the participants. Another benefit would be more engaged clients with a better understanding of the richness and complexity of a digital environment.
series journal
last changed 2019/07/30 10:55

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_000
id sigradi2011_000
authors Chiarella, Mauro; Tosello, Maria Elena (eds.)
year 2011
title Sigradi 2011: Augmented Culture
source Proceedings of the 15th Iberoamerican Congress of Digital Graphics Graphics / ISBN 13: 978-987-657-679-6] Argentina - Santa Fe 16-18 November 2011, 579 p.
summary “Augmented Culture” talks about a combination of interdependent social and technological meanings in a complex, multiple, interactive and interconnected context. It acknowledges that a new social and cultural paradigm is being developed as the old barriers of time, space and language are ruptured and transcended. In our knowledge-based civilization, we inhabit interconnected societies where new relational forms are configured. Additionally, cultural expressions have been qualitatively augmented starting from their integration with information and communication technologies, which have dramatically enhanced not only their creative and reflective processes, but also the realization and construction of cultural objects. In this sense, an “Augmented Culture” compels us to investigate the wide and complex spectrum of the variables that express the interdisciplinary, collective and participative constructions of our present age, so strongly related to visual culture, information culture and interface culture. Thus, we consider it necessary to concentrate, to expand, to spread and to share exploratory, descriptive or explanatory experiences and productions of such phenomena. The attempt is to define a multidimensional theoretical framework that while recognizing today’s state-of-the-art and tendencies, it provides us with a critical viewpoint.
series other
type normal paper
email
last changed 2011/12/30 18:05

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_40465 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002