CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 554

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
doi https://doi.org/10.52842/conf.acadia.2010.327
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2011_068
id ecaade2011_068
authors Ma, Jin Yul; Choo, Seung Yeon; Seo, Ji Hyo; Jeong, Seung Woo
year 2011
title A Study on BIM based Energy Efficient Design Improvement for Rural Standard Drawing and Specification in South Korea: Focusing on Using Buffer-Zone
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.430-438
doi https://doi.org/10.52842/conf.ecaade.2011.430
wos WOS:000335665500049
summary Throughout the world, global warming has been considered a severe problem, which has led to efforts being made for technical development to reduce greenhouse gases in the building sector. As more attention has been paid to energy consumption by residential housing in the building sector, policies and studies on domestic dwellings tend to focus on quality improvement and energy-efficient housing development rather than quantitative housing supply. Yet, policies and guidelines considering residential energy efficiency are inclined to focus on performance and lack in integrated consideration in connection with design. Hence, it seems necessary to compare and analyze design and energy efficiency and to study correlations between housing design and energy. Lately, BIM technology has been used in buildings domestically and proved reliable in respect of its features that enable overall comparison and prediction of housing design, performance and efficiency. The present study is to use the BIM technology to analyze energy consumption and the standard drawing schemes for rural areas to find ways to improve efficient design in singles housing sector and to suggest how to take advantage of buffer zones and how to improve housing design in favor of energy efficiency.
keywords BIM; Energy Analysis Tool; Rural Standard Drawing; Buffer-Zone; Sustainable design
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_145
id ecaade2011_145
authors Araújo, Leandro; Andrés, Roberto
year 2011
title BIM.BON . A BIM system for architectural practice in Brazil
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.439-443
doi https://doi.org/10.52842/conf.ecaade.2011.439
wos WOS:000335665500050
summary This article discusses the difficulties faced by the BIM (Building Information Modeling) systems to be widely adopted among most part of architecture and engineering professionals in Brazil. A revision of the issue and investigation of possibilities for improving the practice of architecture were made by creating a new model of BIM software addressed to a wider audience. It lists the main critical points in the usability of BIM software, based on a survey made with 300 professionals. The analysis is followed by a study of a new BIM software that could reach a wider audience of architects by implementing a tool that directly links the users to the construction materials market, also including a tool for easy budgetary calculations.
keywords BIM Software; Architectural design; Architecture in Brazil; ICT; Collaborative design
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_025
id acadiaregional2011_025
authors Bum Kim, Jong ; Mark J. Clayton, Wei Yan
year 2011
title Parametric Form-Based Codes: Incorporation of land-use regulations into Building Information Models
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.l7j
summary This project describes investigations into whether parametric modeling using a Building Information Modeling (BIM) platform can represent the provisions and constraints of Form-Based Codes (FBCs). BIM software environments couple 3D modeling with parametric form generation and rich semantics. Further capabilities of an Application Programming Interface that supports Object-Oriented Programming (OOP) results in a very powerful environment for expressing planning and design concepts. While these capabilities were developed under the intention of supporting building design, we hypothesize that they can support planning rules and regulations that are found in FBCs. If our approach is successful, future planning departments will be able to provide architects and urban designers with a FBC that is implemented as a BIM software toolkit, better integrating the planning phase of a project into the building design phase.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_020
id ecaade2011_020
authors de la Barrera Poblete, Carlos Ignacio
year 2011
title Evolutionary Strategy to Design Optimized Architecture
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.293-301
doi https://doi.org/10.52842/conf.ecaade.2011.293
wos WOS:000335665500033
summary The purpose of the present experiment consists in optimizing a building modifying its apertures (windows) and its geometry to reduce heating and air conditioning consumption. The optimization is performed using a Micro-Genetic Algorithm (Micro-GAs) programmed in C# embedded like a series of functions into GenerativeComponents (GC). EnergyPlus (E+) software is used to evaluate the HVAC consumption levels of the building. The aim of the optimization is to keep the temperature at 20ºC on the hottest and coldest day using the least possible energy (Jules). In conclusion, this article proposes a new technique based on parametric modelling, evaluation and evolutionary optimization to generate efficient buildings with HVAC consumptions.
keywords Optimization; Parametric design; Genetic Algorithms; Energy Consumption; Architecture
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_045
id ecaade2011_045
authors Noriega, Farid Mokhtar; Barba, Victor Garcia; Merino, Jose Antonio; Zancajo, Jose Julio; Pérez, Teresa Mostaza
year 2011
title ArchiInspection Project: Integrated Non Destructive Testing, A Building Information Model Approach
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.383-392
doi https://doi.org/10.52842/conf.ecaade.2011.383
wos WOS:000335665500044
summary A non destructive testing process is becoming a technical need, thousands of buildings and huge urban areas will have to be adapted to restrictive energy-saving standards and sustainability criteria. Analysis and diagnostics are required on a massive scale. Building Information Modeling seems to be the adequate environment to assemble huge amounts of data. At this moment both hardware and software technologies are performing moderately well separately. The challenge is to connect them and in the long run automate data collection and conversion to a unified model that could be maintained during the programmed building life cycle. The aim of this research is to discuss the challenge of NDT hardware and BIM software systems integration and define the basic steps for the best practices to undertake it in a fast and accurate manner as well as to define the present and future connections to be developed. A 3 phase joint research project is proposed here and basic needs are analysed. Many lessons have been learned from field work, data translation and data incompatibilities with many shortcomings being detected.
keywords BIM; Architectural Non Destructive Testing; Architectural conservation databases; information interoperability
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
doi https://doi.org/10.52842/conf.acadia.2011.152
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id ecaade2014_092
id ecaade2014_092
authors Sherif Abdelmohsen
year 2014
title A BIM-based Framework for Assessing Architectural Competition Entries
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 473-483
doi https://doi.org/10.52842/conf.ecaade.2014.2.473
wos WOS:000361385100050
summary Architectural competitions have been traditionally used to select best design practices. The basis of assessment for competitions has typically involved non-technical concepts of quality, subjective and emotional appreciations of experiences, and inseparable accord of formal, functional, aesthetic and contextual values (Rönn, 2011), rather than clear-cut objective and precisely measured values as in the engineering domain (Nashed, 2005; Nelson, 2006). Criteria for judgment usually focus on design parti and clarity of concept, novelty of architectural approach, context compliance, spatial organization, functional adaptability, economical solutions, and design flexibility. The assessment process, although presumably comprehensive and involving multiple evaluation techniques and resources, may still overlook important technical issues that may be fundamentally significant to the exclusion or approval of a given entry. This paper introduces a framework for assessing architectural competition entries aided by concepts of building information modeling (BIM).
keywords Building information modeling; architectural competitions; design evaluation; best practices; rule checking
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia11_60
id acadia11_60
authors Speaks, Michael
year 2011
title New Values of New Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 60-63
doi https://doi.org/10.52842/conf.acadia.2011.060
summary Driven by advances in building and information technology and accelerated by the tumultuous period of global economic restructuring that commenced in 2008, architecture and interior design practice is today confronted with the necessity of fundamental change. According to the “Building Futures” group at the Royal Institute of British Architects and US-based “Design Futures Council,” both of which this past year published studies on this very topic, a great deal depends on what happens in China and other emerging markets, where many European and US firms now have offices. And that is not only because these are the most vibrant markets for architecture and design services, but also because the demands placed on practitioners in these markets are fundamentally changing the way buildings are designed and delivered, at home and abroad. Both studies suggest that all sectors of the A/E/C industry will face increasingly fierce competition that will, of necessity, force practices large and small to compete less on cost and more on value. In the very near future buildings and their interiors will be valued almost entirely based on performance—economic, cultural, environmental—and only those firms able to create these and other forms of added value will survive. Disruptive technologies like building information modeling and integrated product delivery will enable all firms, even those competing solely on the basis of cost, to design better buildings and deliver them more efficiently. But in such a fiercely competitive global marketplace, efficiency alone will not be enough to guarantee market viability. The real differentiator will instead be design.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:56

_id ijac20119402
id ijac20119402
authors Toth, Bianca; Flora Salim, Jane Burry, John Frazer, Robin Drogemuller and Mark Burry
year 2011
title Energy-Oriented Design Tools for Collaboration in the Cloud
source International Journal of Architectural Computing vol. 9 - no. 4, 339-359
summary Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design.As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation.A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly.This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
series journal
last changed 2019/07/30 10:55

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_836711 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002