CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 242

_id caadria2011_069
id caadria2011_069
authors Fernando, Ruwan; James Steel and Robin Drogemuller
year 2011
title Using domain specific languages in the Building Information Modelling workflow
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 731-740
doi https://doi.org/10.52842/conf.caadria.2011.731
summary The design of architecture, in practice, entails the collaboration of many disciplines each with their own set of tools and representations. Building Information Models aim to support interoperability between these disciplines. However current implementations require a lot of manual work involving translating parts from the various specialised descriptions to the common model format. Domain Specific Languages are a development from Information Technology that defines a mapping from the concepts used in one discipline to those used in another. In this paper, a workflow incorporating the movement between specialised languages and a central model is described. The central model is structured using the Industrial Foundation Classes (IFC). The motivation for elaborating on the interdisciplinary workflow is the desire to create a more iterative process without the need for the manual recreation of models. While it is difficult to have a description or language that contains all the information of all the disciplines, this research demonstrates how the IFC schema acts as a pivot not just between data sets, but also between concepts expressed in different representations thus giving from analysis to design.
keywords Building Information Model; BIM; domain-specific languages; lighting; spatial planning; parametric modelling
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
doi https://doi.org/10.52842/conf.caadria.2011.717
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac20119408
id ijac20119408
authors Holzer, Dominik
year 2011
title BIM’s Seven Deadly Sins
source International Journal of Architectural Computing vol. 9 - no. 4, 463-480
summary This paper aims at exposing seven prevailing problems that have emerged in the uptake of Building Information Modelling (BIM) in design practice.The paper provides a reality check between an idealistic view on BIM and the way it is currently applied in daily use. In order to reflect on the issues at hand, the author draws from three years of doctoral research in multidisciplinary design collaboration, followed by more than two years experience as Design Technology director in a large scale architecture practice. In addition to the above, his current role as the chair of the BIM and IPD Steering Group of the Australian Institute of Architects and Consult Australia exposes the author to a broad range of cultural implications of BIM.The findings presented here illustrate that, despite major advances in the development of BIM, there are predominantly cultural roadblocks to its implementation in practice.
series journal
last changed 2019/07/30 10:55

_id caadria2011_006
id caadria2011_006
authors Kim, Jason J. and Hyoung-June Park
year 2011
title Digital catalogue: A computational implementation of Korean joinery system in the design of a transformable disaster shelter
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 61-70
doi https://doi.org/10.52842/conf.caadria.2011.061
summary With the help of Building Information Modelling (BIM), the digital catalogue of all the 44 components of Korean joinery system is developed for the application of their tectonic principles in the design of a transformable disaster shelter. Based upon the components of three primary bracket styles (Jusim-Po, Ik-Gong, and Da-Po) of traditional Korean joinery system in the catalogue, the parametric modifications of the components and their rearrangements are performed for various iteration of the disaster shelter. The usage of Korean joinery system in assembling and disassembling the components enhances the transformability and the reusability of the shelter. This paper demonstrates the computational implementation of Korean joinery system and the design process of a transformable disaster shelter.
keywords Digital catalogue; BIM; Korean joinery system
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p152
id cf2011_p152
authors Plume, Jim; Mitchell John
year 2011
title An Urban Information Framework to support Planning, Decision-Making & Urban Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 653-668.
summary This paper reports on a 2-year research project undertaken in collaboration with a state planning authority, a major city municipal council and a government-owned development organisation. The project has involved the design of an urban information model framework with the aim of supporting more informed urban planning by addressing the intersection where an individual building interfaces with its urban context. This adopted approach enables new techniques that better model the city and its processes in a transparent and accessible manner. The primary driver for this project was the challenge provided by the essential incompatibility between legacy GIS (geographic information system) datasets and BIM (building information model) representations of the built form. When dealing with urban scale information, GIS technologies use an overlay mapping metaphor linked to traditional relational database technologies to identify features or regions in the urban landscape and attach attribute data to those in order to permit analysis and informed assessment of the urban form. On the other hand, BIM technologies adopt an object-oriented approach to model the full three-dimensional characteristics of built forms in a way that captures both the geometric and physical attributes of the parts that make up a building, as well as the relationships between those parts and the spaces defined by the building fabric. The latter provides a far richer semantic structure to the data, while the former provides robust tools for a wide range of urban analyses. Both approaches are widely recognised as serving well the needs of their respective domains, but there is a widespread belief that we need to reconcile the two disparate approaches to modelling the real world. This project has sought to address that disjunction between modelling approaches. The UrbanIT project concentrated on two aspects of this issue: the development of a framework for managing information at the precinct and building level through the adoption of an object-oriented database technology that provides a platform for information management; and an exploration of ontology tools and how they can be adopted to facilitate semantic information queries across diverse data sources based on a common urban ontology. This paper is focussed on the first of those two agendas, examining the context of the work, the challenges addressed by the framework and the structure of our solution. A prototype implementation of the framework is illustrated through an urban precinct currently undergoing renewal and redevelopment, finishing with a discussion of future work that comes out of this project. Our approach to the implementation of the urban information model has been to propose extensions to ISO/PAS 16739, the international standard for modelling building information that is commonly known as IFC (Industry Foundation Classes). Our reason for adopting that approach is primarily our deep commitment to the adoption of open standards to facilitate the exchange of information across the built environment professions, but also because IFC is based on a robust object schema that can be used to construct a internet-accessible database able, theoretically, to handle the vast quantity of data needed to model urban-scale information. The database solution comes with well-established protocols for handling data security, integrity, versioning and transaction processing or querying. A central issue addressed through this work is concerned with level of detail. An urban information model permits a very precise and detailed representation of an urban precinct, while many planning analyses rely on simplified object representations. We will show that a key benefit of our approach is the ability to simultaneously maintain multiple representations of objects, making use of the concept of model view definitions to manage diverse analysis needs.
keywords urban information modelling, geographic information systems, city models, interoperability, urban planning, open standards
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_030
id ecaade2011_030
authors Svetel, Igor; Pejanovi_, Milica; Ivaniševi_, Nenad
year 2011
title Using Open Standards Based Building Information Modelling to Simulate Actual Design and Construction Processes
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.421-429
doi https://doi.org/10.52842/conf.ecaade.2011.421
wos WOS:000335665500048
summary The paper describes pilot project conducted to achieve first understanding of the IFC standard and BIM process in Serbia. During the project a research team have developed information model of the actual building using IFC standard and BIM technology and used that model to simulate an actual construction processes. The experience from this project shows that BIM principles and the way IFC standard is incorporated in applications are still a set of recommendations that each software developer interprets separately. At the end of the paper a possibility of further development that would bring BIM and related ICT standards to expected functionality is discussed.
keywords BIM; IFC; BIMserver; design; construction
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_145
id ecaade2011_145
authors Araújo, Leandro; Andrés, Roberto
year 2011
title BIM.BON . A BIM system for architectural practice in Brazil
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.439-443
doi https://doi.org/10.52842/conf.ecaade.2011.439
wos WOS:000335665500050
summary This article discusses the difficulties faced by the BIM (Building Information Modeling) systems to be widely adopted among most part of architecture and engineering professionals in Brazil. A revision of the issue and investigation of possibilities for improving the practice of architecture were made by creating a new model of BIM software addressed to a wider audience. It lists the main critical points in the usability of BIM software, based on a survey made with 300 professionals. The analysis is followed by a study of a new BIM software that could reach a wider audience of architects by implementing a tool that directly links the users to the construction materials market, also including a tool for easy budgetary calculations.
keywords BIM Software; Architectural design; Architecture in Brazil; ICT; Collaborative design
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_025
id acadiaregional2011_025
authors Bum Kim, Jong ; Mark J. Clayton, Wei Yan
year 2011
title Parametric Form-Based Codes: Incorporation of land-use regulations into Building Information Models
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.l7j
summary This project describes investigations into whether parametric modeling using a Building Information Modeling (BIM) platform can represent the provisions and constraints of Form-Based Codes (FBCs). BIM software environments couple 3D modeling with parametric form generation and rich semantics. Further capabilities of an Application Programming Interface that supports Object-Oriented Programming (OOP) results in a very powerful environment for expressing planning and design concepts. While these capabilities were developed under the intention of supporting building design, we hypothesize that they can support planning rules and regulations that are found in FBCs. If our approach is successful, future planning departments will be able to provide architects and urban designers with a FBC that is implemented as a BIM software toolkit, better integrating the planning phase of a project into the building design phase.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_068
id sigradi2011_068
authors Gomez Zamora, Paula
year 2011
title NonGeometric Information Visualization in BIM. An Approach to Improve Project Team Communication
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 22-26
summary Building design and construction processes use geometrical models as well as other documentation for com- municating information during all phases of a project. Currently, an important amount of information included into the documentation is not linked to the 3D model, such as emails or decision-making updates. A huge challenge is an accurate and effective management of this non-geometrical information to improve team communication. This paper proposes the uses of Information Visualization techniques for managing these data visually, enhancing human understanding and interpretation. This research area is situated in the intersection of three areas of computing
keywords Building Information Modeling (BIM); non-geometrical information; information visualization; team project communication
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadiaregional2011_028
id acadiaregional2011_028
authors Haliburton, James; Mark Clayton, Ozan Ozener, Francisco Farias, WoonSeong Jeong
year 2011
title Parametric Modeling and BIM: Innovative Design Education for Integrated Building Practices
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.c0v
summary Parametric modeling and Building Information Modeling (BIM) present opportunities to radically change the architectural design process, which has similarly radical implications upon design education. These processes and technologies are demanding a broader knowledge base and deeper skill set. The same technologies and processes create opportunities to meet and surpass the traditional architectural knowledge base that forms the basis for design education. Outlined in this paper are the results of three studies that employed BIM and parametric modeling within the context of simulated professional project delivery and compares the results using the new process to the NAAB Student Performance Criteria. From these studies, it appears that the alternative design method that employs BIM and parametric modeling is more rigorous and effective than the traditional method of instructing students with respect to the Student Performance Criteria in Realm B: Integrated Building Practices.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_196
id sigradi2011_196
authors Monteiro de Menezes, Alexandre; Silva Viana, Maria de Lourdes; Pereira Junior, Mário L.; Palhares, Sergio R.
year 2011
title O BIM e os projetos de edificações: adequações e inadequações [BIM and building projects]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 98-102
summary This research investigates the use of BIM technology in teaching and practice of architectural design, struc- tures and facilities in the construction of buildings. From researches that point critics to the linear process of building design and compatibility of information, and from data found that indicate conceptual adequacy and inadequacy of the use of BIM in the steps of building design, the goal is to map research groups, teachers and universities tha perform research and apply this technology, in order to know the state of the art in the field of professional practice and academic on the national scene.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2011_045
id ecaade2011_045
authors Noriega, Farid Mokhtar; Barba, Victor Garcia; Merino, Jose Antonio; Zancajo, Jose Julio; Pérez, Teresa Mostaza
year 2011
title ArchiInspection Project: Integrated Non Destructive Testing, A Building Information Model Approach
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.383-392
doi https://doi.org/10.52842/conf.ecaade.2011.383
wos WOS:000335665500044
summary A non destructive testing process is becoming a technical need, thousands of buildings and huge urban areas will have to be adapted to restrictive energy-saving standards and sustainability criteria. Analysis and diagnostics are required on a massive scale. Building Information Modeling seems to be the adequate environment to assemble huge amounts of data. At this moment both hardware and software technologies are performing moderately well separately. The challenge is to connect them and in the long run automate data collection and conversion to a unified model that could be maintained during the programmed building life cycle. The aim of this research is to discuss the challenge of NDT hardware and BIM software systems integration and define the basic steps for the best practices to undertake it in a fast and accurate manner as well as to define the present and future connections to be developed. A 3 phase joint research project is proposed here and basic needs are analysed. Many lessons have been learned from field work, data translation and data incompatibilities with many shortcomings being detected.
keywords BIM; Architectural Non Destructive Testing; Architectural conservation databases; information interoperability
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2014_099
id sigradi2014_099
authors Paiva de Almeida, Álvaro José
year 2014
title Implantação de software BIM em curso de arquitetura [BIM application in course of architecture]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 49-52
summary This paper presents partial results from a process of a BIM application in the third period of the Architecture course of PUC Minas from August 2011. The study refers to a learning experience. It is, methodologically, an experimental research. The software learning process happens parallel to the design process. The students have to design a little house, with help of all disciplines of the period. The great advantage of BIM in the design process is that obtaining the details, cuts, plants, etc. occurs from detailed digital model of the building.
keywords Building Information Modeling; Desenho Digital; Desenho Arquitetônico; Projeto integrado; Metodologia de Projeto
series SIGRADI
email
last changed 2016/03/10 09:57

_id ijac20109204
id ijac20109204
authors Shepherd, Paul; Roly Hudson, David Hines
year 2011
title Aviva Stadium: A parametric success
source International Journal of Architectural Computing vol. 9 - no. 2, 167-186
summary The Aviva Stadium, Dublin, is the first stadium to be designed from start to finish using commercially available parametric modelling software. A single model in Bentley’s Generative Components was shared between architects and engineers, which allowed the optimised design of form, structure and fac_ade. The parametric software was extended where necessary to integrate with structural analysis and to automate fabrication. By reducing the overhead associated with design iterations, this approach allowed detailed exploration of options and early identification and resolution of potential problems. In this paper, the authors add to the body of scientific knowledge by describing in detail the methods which led to the construction of the Aviva Stadium.This paper is written in light of the completed building and provides information on the generation and control of the envelope geometry, development and analysis of structure and documentation for construction.Whilst these components have been discussed independently previously [1–4], here these aspects are drawn together for the first time and are presented alongside thoughts on the manufacturing and construction processes from the project architect.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_658600 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002