CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 521

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
doi https://doi.org/10.52842/conf.caadria.2011.717
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
doi https://doi.org/10.52842/conf.acadia.2011.082
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_002
id caadria2011_002
authors Bernal, Marcelo
year 2011
title Analysis model for incremental precision along design stages
doi https://doi.org/10.52842/conf.caadria.2011.019
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 19-18
summary With current energy analysis tools, architects and engineers cannot rely on the results of energy analyses because they do not report their level of precision. In addition, current tools also do not deliver feedback in real time. Thus, this research addresses the challenge of obtaining feedback in real-time while gradually increasing precision along design stages. For this purpose, this study merges parametric modelling (PM) technologies and the performance-based design (PBD) paradigm into a general design model. The model is based on a parametric and an energy analysis model that share the parameters of a building. The modular architecture of the model involves four main function types: an input processor, optional analysis functions embedding different calculation methods, a decision-maker, and a report generator function. For every step of the design evolution, the decisionmaker function generates a specific tree of analysis functions.
keywords Performance; decision-making; extensibility; knowledgebased design; design automation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_108
id ecaade2011_108
authors Celani, Gabriela; Beirão, José N.; Duarte, José P.: Vaz, Carlos
year 2011
title Optimizing the “characteristic structure”: Combining shape grammars and genetic algorithms to generate urban patterns
doi https://doi.org/10.52842/conf.ecaade.2011.491
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.491-500
summary The present paper is part of an undergoing research that aims at developing software that can generate urban plans, based on contemporary urban design concepts, in an optimized way. As a design method, the project proposes the use of the trilogy formulation/ generation/evaluation, which starts with an outline of the design requirements, proceeds with the definition of generative procedures that can result in these requirements, and follows with the evaluation of the generated designs. The paper describes the development of a computer program that implements some of Marshall’s evaluation methods, and further elaborates them to define generative criteria and to optimize the resulting designs with GA techniques. The program aims at generating what Marshall calls a “characteristic structure”, a type of urban fabric that is usually found in vernacular urban fabrics.
wos WOS:000335665500057
keywords Generative design; urban design; genetic algorithms; shape grammars
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_023
id caadria2011_023
authors Champion, Erik M. and Andrew Dekker
year 2011
title Indirect biofed architecture: Strategies to best utilise biofeedback tools and interaction metaphors within digital architectural environment
doi https://doi.org/10.52842/conf.caadria.2011.241
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 241-250
summary This paper explains potential benefits of indirect biofeedback used within interactive virtual environments, and reflects on an earlier study that allowed for the dynamic modification of a virtual environment’s graphic shaders, music and artificial intelligence (of Non Playing Characters) based on the biofeedback of the player. It then examines both the potential and the issues in applying biofeedback (already effective for games) to digital architectural environments, and suggests potential uses such as personalization, object creation, atmospheric augmentation, filtering, and tracking.
keywords Virtual worlds; biofeedback; sensors; empathy theory
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_004
id caadria2011_004
authors Coorey, Benjamin P. and Julie R. Jupp
year 2011
title Parametric modelling and design processes: Exploringsynthesis and evaluation using a Function-Behaviour-Structure perspective
doi https://doi.org/10.52842/conf.caadria.2011.039
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 39-48
summary In an attempt to extend our understanding of the design process in the context of computational parametric design tools, this paper explores the relationship between and interaction of synthesis and evaluation. In establishing the importance of their coupling in parametric design the paper then explores its consequence on the design process relative to existing models of designing. A tension between designing as planning, search and exploration in parametric design is highlighted together with a conceptual framework, which draws from a situated Function-Behaviour-Structure model of design. The purpose of the framework is to facilitate these different modes of designing and is targeted at the use of parametric tools.
keywords Design processes; parametric design; evaluation; synthesis, design models
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_272
id acadia11_272
authors Dimcic, Milos; Knippers, Jan
year 2011
title Free-form Grid Shell Design Based on Genetic Algorithms
doi https://doi.org/10.52842/conf.acadia.2011.272
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 272-277
summary In the 21st century, as free-form design grows in popularity, grid shells are becoming a universal structural solution, enabling the conflation of structure and skin (façade) into one single element (Kolarevic 2003). This paper presents some of the results of a comprehensive research project focused on the automated design and optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It shows that by combining design and FEM software in an iterative, Genetic Algorithms-based optimization process, stress and deformation in grid shell structures can be significantly reduced, material can be saved and stability enhanced.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
doi https://doi.org/10.52842/conf.acadia.2011.170
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id caadria2011_057
id caadria2011_057
authors Fraser, Matthew and Michael Donn
year 2011
title Thinking through digital simulation tasks in architectural education
doi https://doi.org/10.52842/conf.caadria.2011.599
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 599-608
summary This study reports the activities of 80 second year architecture students at Victoria University, Wellington, New Zealand for the duration of a single trimester. A central theme in this studio is the framing of day-lighting problems into a quantifiable investigation and then addressing these through the use of digital modelling and simulation tools. This study offers an insight to undergraduate architecture students’ negotiation of digital design spaces and asks the question of how the knowledge of skill-based specialist tasks are extensible to core design studio.The mass education within a University environment of such specialist skill based techniques allows for an insight to the negotiation of quantitative and qualitative design criteria. The issue of learning skill based tasks at university level is a pertinent topic of study as the critique of such techniques is implicit to the holistic education of Architects but the level of this critique can vary greatly. This question also highlights the challenges faced to improving the design education approaches to computational thinking and applications.
keywords Design analysis; daylight simulation; education
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_031
id caadria2011_031
authors Fukuda, Tomohiro; Kensuke Kitagawa and Nobuyoshi Yabuki
year 2011
title A study of variation of normal of polygons created by point cloud data for architectural renovation field
doi https://doi.org/10.52842/conf.caadria.2011.321
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 321-330
summary Acquiring current 3D space data of cities, buildings, and rooms rapidly and in detail has become indispensable. When the point cloud data of an object or space scanned by a 3D laser scanner is converted into polygons, it is an accumulation of small polygons. When object or space is a closed flat plane, it is necessary to merge small polygons to reduce the volume of data, and to convert them into one polygon. When an object or space is a closed flat plane, each normal vector of small polygons theoretically has the same angle. However, in practise, these angles are not the same. Therefore, the purpose of this study is to clarify the variation of the angle of a small polygon group that should become one polygon based on actual data. As a result of experimentation, no small polygons are converted by the point cloud data scanned with the 3D laser scanner even if the group of small polygons is a closed flat plane lying in the same plane. When the standard deviation of the extracted number of polygons is assumed to be less than 100, the variation of the angle of the normal vector is roughly 7 degrees.
keywords Point cloud; 3D laser scanner; physical space; virtual reality; polygon optimization
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia11_90
id acadia11_90
authors Fure, Adam
year 2011
title Digital Materiallurgy: On the productive force of deep codes and vital matter
doi https://doi.org/10.52842/conf.acadia.2011.090
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 90-97
summary This paper expands the discourse surrounding digital forms of making by scrutinizing the role of materials within computation, ultimately proposing a speculative working model that charts new territory. The growing importance of materials within technological research makes this an appropriate time to consider the nuance of their role within it. Currently, material innovation is happening along two central tracks: the customized cutting, sculpting, and forming of conventional materials with Computer Numerically Controlled (CNC) fabrication equipment and the development of new materials through innovations in material science. Both tracks rely on a limited set of material protocols which enable process-based control and eliminate the intrusion of any unpredictable material variable. Although efficient, such an approach limits architecture’s ability to procure novel material engagements. A few designers are developing an alternative model where computational codes are coupled with eccentric materials to produce unusual results. Digital materiallurgy, as I have called it, is part technique and part attitude; it relies on intentionally ceding limited design control to unpredictable matter—thus capitalizing on matter’s innate ability to produce unexpected formal and material complexity. Digital materiallurgy identifies the intersection of computation and eccentric materiality as a departure point for architectural innovation. By purposefully inserting material heterogeneity and inconsistency into computational means and methods, this work pries apart the apparently seamless relationship between digital design and physical production. By blurring the distinction between physical material and digital form, this work offers an integrated aesthetic experience, one that fetishizes neither the virtual nor the vintage but fuses both into a richer, wilder present.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
doi https://doi.org/10.52842/conf.caadria.2011.175
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_054
id caadria2011_054
authors Herr, Christiane M.
year 2011
title Gains, losses and limitations in designing parametrically: A critical reflection of an architectural design studio in China
doi https://doi.org/10.52842/conf.caadria.2011.569
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 569-578
summary This paper argues that learning to design parametrically in the architectural studio entails gains but also losses, since the parametric design approach tends to and encourage certain patterns of thought while discouraging others. This investigation complements previous research focusing mostly on technological aspects. Based on observational data from a parametric design studio in China, this paper discusses how parametric designing can pose challenges to existing design values and approaches, specifically within a Chinese context. It further draws attention to the limitations of parametric designing, which in the observed cases required both students and teachers to break and extend parametric models besides and beyond parametric variation to make them work architecturally. This paper aims to inform educators employing parametric designing in their architectural design studios as well as researchers who examine such studios.
keywords Parametric design; studio; design culture; education
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_288024 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002