CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 433

_id caadria2011_014
id caadria2011_014
authors Khoo, Chin Koi and Flora Dilys Salim
year 2011
title Designing elastic transformable structures: Towards soft responsive architecture
doi https://doi.org/10.52842/conf.caadria.2011.143
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 143-152
summary This paper discusses the issues of designing and building environment involving spatial conditions that can be physically reconfigured to meet changing needs. To achieve this architectural vision, most current research focuses on the kinetic, mechanical systems and physical control mechanisms for actuation and structural transformation. Instead of the ‘hard’ mechanical joints and components, there is an unexplored ‘soft’ approach using lightweight elastic composite materials for designing responsive architectural skins and structures. This paper investigates the new possibilities for the manipulation of various architectural enclosures using ‘soft’ and elastic transformable structures, in response to environmental, communication and adapting to various contexts. This approach intends to minimise the mechanistic actuations and reduce weight for such operations. Therefore, this research introduces two modules (a tetrahedron and a cube) as responsive spatial models to test the potentials and limitations for the implementation of elastic materials with responsive capability towards reconfigurable architectural enclosure. Despite their individual differences, these experiments identify a trajectory for new possibilities for elastic architectural components that are more appropriate for ‘soft’ responsive architecture. We argue that this approach can provide an early hypothesis for design responsive architecture with a mix of passive and active design strategies.
keywords Elastic; transformable; soft; responsive
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia11_334
id acadia11_334
authors Khoo, Chin Koi; Burry, Jane; Burry, Mark
year 2011
title Soft Responsive Kinetic System: An Elastic Transformable Architectural Skin for Climatic and Visual Control
doi https://doi.org/10.52842/conf.acadia.2011.334
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 334-341
summary Most designers of dynamic building skins that reconfigure themselves in changing conditions have utilised mechanical systems. However, when designing for dynamic responsiveness, these systems often involve intricate and high-tech mechanistic joints, actuators and control. This research investigates the possibility of the ‘soft’ form-changing material systems to minimise the use of ‘hard’ mechanical components for kinetic responsive architectural skins. The research goal is to develop a prototype system that can be used to retrofit an existing building with an application of a ‘second skin’ that performs well in various climate conditions and is visually compelling. This approach is tested by the prototype, namely “Curtain”. It serves two fundamental purposes: Comfort and Cosmetic, to improve the existing interior and exterior spatial conditions. As an early proposition, the significance of this research offers a practical method for realising a ‘soft’ transformable architectural skin that synthesises passive cooling, manipulates sunlight and is set as an active shading device. Parametric design is used to explore and simulate these climatic and visual design constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id acadia11_326
id acadia11_326
authors Velikov, Kathy; Thün, Geoffrey; O’Malley, Mary; Ripley, Colin
year 2011
title Toward Responsive Atmospheres: Prototype Exploration through Material and Computational Systems
doi https://doi.org/10.52842/conf.acadia.2011.326
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 326-333
summary The Stratus Project is an ongoing body of design research investigating the potential for kinetic, sensing and environment-responsive interior envelope systems. The research emerges from a consideration of our attunement to the soft systems of architecture – light, thermal gradients, air quality and noise – paired with a desire to develop and prototype envelopes that not only perform to affect these atmospheres, but also to promote continual information and material exchange, and eventually dialogue, between occupant and atmosphere. Stratus v1.0 included the construction of a modest prototype using simple open source technologies, aimed to explore the formal, operational and technological possibilities, as well as potential operability and control conflicts, as part of the first phase of thinking around these questions. It deploys a distributed approach to structural, mechanical and communications systems design and delivery, where localized response is prioritized. The project works to reclaim the environmentally performative elements of architecture – in this case, specifically, interior mechanical delivery and interface systems – to within the purview of the discipline, as territories of material, formal, technological and experiential innovation and exploration. This paper will describe both the development of the current prototype as well as future research and investigation trajectories. The Stratus Project begins by situating itself at the crossroads of the disciplinary territories of architecture, technology, environmental control and cybernetics. Through the use of computational technologies and in collaboration with researchers in the fields of computer science, mechanical engineering and materials science, this project aims to advance the development of responsive environmental design and performative building skins.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2011_132
id ecaade2011_132
authors Coskun, Emirhan; Cagdas; Gulen
year 2011
title An Integrated Model For Emergent City Behavior Based On User Movements
doi https://doi.org/10.52842/conf.ecaade.2011.159
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.159-165
summary Today, with rapidly evolving information technology, computer technologies has become an interface rather than a tool for design process. With the development in computer applications it has become possible to solve design problems which were not possible to handle before. Computer environment which has become an interface rather than a tool for design has also led to the emergence of a number of concepts. New concepts such as Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided Engineering (CAE) are being involved in design process. With the development of Artificial Intelligence (AI) , AI has earned an interdisciplinary position. Agent based systems which are contained in the fields of AI have become the subjects of many researches in design basis. Approach to the problem solving process in the process of architectural/design problems is to be addressed as an important point within the scope of evaluation process. In this context user movements have a very critical role in process of problem solving according to the design problems. While designing or solving a design problem , ignoring the user movements can lead to unwanted results. Within the scope of this study user movements in city are considered in the context of emerging urban part/particles as a preliminary study.
wos WOS:000335665500018
keywords Emergence; agent-based systems; user movements in city; city dweller
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
doi https://doi.org/10.52842/conf.acadia.2011.318
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2011_p099
id cf2011_p099
authors Huang, Andy; Erhan Halil, Woodbury Robert, Nasirova Diliara, Kozlova Karine
year 2011
title Collaboration Workflow Simplified: Reduction of Device Overhead for Integrated Design Collaboration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 591-602.
summary Design collaboration relies on cognitive tools such as analog media and digital peripheral devices, and shows the characteristics of distributed cognition. It is a social and complex activity involving multiple agents communicating and using external cognitive tools to encode, decode, and share information in the process of collaborative task completion. The systems supporting this activity should meet the ’principle of least collaboration effort’ [4] that proposes that agents in collaboration minimize their effort in presentation and acceptance of information. Yet, current collaboration systems are dispersed mixed media that is often overloaded with representations and functionality, thus preventing seam- less information sharing. Designers are required to spend extra effort collecting information using peripheral devices and in system management when sharing information. The goal of this study is to understand these overheads in infor- mation collection and sharing using peripheral devices, and to provide designers with a supportive platform to enhance collaboration using both analog and digital media. In this paper, we first review available peripheral devices such as smart pens, digital cameras, and voice recorders, as well as existing collaboration sup- porting software systems for their benefits and deficiencies in collaboration. We then present ’DiNa’, a collaboration platform that is envisioned to improve pro- ductivity and reduce redundant work by integrating peripheral devices into the collaboration workflow. We demonstrate a possible workflow using this system through several scenarios where designers collaborate in performing a series of design tasks. We hope to bring attention to the importance least collaborative effort in designing systems to support real-world collaboration.
keywords Collaboration, Peripheral Devices, Knowledge Collection, Human Computer Interaction, Computer Aided Design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20119405
id ijac20119405
authors Koi Khoo, Chin; Flora Salim and Jane Burry
year 2011
title Designing Architectural Morphing Skins with Elastic Modular Systems
source International Journal of Architectural Computing vol. 9 - no. 4, 379-419
summary This paper discusses the issues of designing architectural skins that can be physically morphed to adapt to changing needs.To achieve this architectural vision, designers have focused on developing mechanical joints, components, and systems for actuation and kinetic transformation. However, the unexplored approach of using lightweight elastic form-changing materials provides an opportunity for designing responsive architectural skins and skeletons with fewer mechanical operations. This research aims to develop elastic modular systems that can be applied as a second skin or brise-soleil to existing buildings.The use of the second skin has the potential to allow existing buildings to perform better in various climatic conditions and to provide a visually compelling skin.This approach is evaluated through three design experiments with prototypes, namely Tent, Curtain and Blind, to serve two fundamental purposes: Comfort and Communication.These experimental prototypes explore the use of digital and physical computation embedded in form-changing materials to design architectural morphing skins that manipulate sunlight and act as responsive shading devices.
series journal
last changed 2019/07/30 10:55

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p003
id cf2011_p003
authors Ng, Edward; Ren Chao
year 2011
title Sustainable Planning with a Synergetic Collation of Thermal and Dynamic Characteristics of Urban Climate using Map Based Computational Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 367-382.
summary Since 2006, half of the world’s population lives in cities. In the age of climate change, designing for quality environmental living conditions and sustainability is a topical concern. However, on the one hand, designers and city planners operate with their three dimensional city morphological data such as building shapes and volumes, forms and their spacings, and functional attributes and definition signatures. On the other hand, urban climatologists operate with their numbers and equations, quantities and signals, and normals and anomalies. Traditionally the two camps do not meet. It is a challenge to develop design tools that they can work together. Map based information system based on computational geographic information system (GIS) that is properly structured and represented offers a common language, so to speak, for the two professional groups to work together. Urban climatic map is a spatial and graphical tool with information embedded in defined layers that are collated so that planners and urban climatologists can dialogue over design issues. With various planning and meteorological data coded in defined grid resolutions onto the GIS map system, data can be synergized and collated for various understandings. This papers explains the formulation of Hong Kong’s GIS based Urban Climatic Map as an example of how the map works in practice. Using the map, zonal and district based planning decisions can be made by planners and urban climatologists that lead to new designs and policy changes.
keywords sustainable development, urban planning, urban thermal, urban dynamics, computer tools
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
doi https://doi.org/10.52842/conf.acadia.2011.300
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_242
id acadia11_242
authors Braumann, Johannes; Brell-Cokcan, Sigrid
year 2011
title Parametric Robot Control: Integrated CAD/CAM for Architectural Design
doi https://doi.org/10.52842/conf.acadia.2011.242
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 242-251
summary Robots are gaining popularity in architecture. Snøhetta has recently purchased their own industrial robot, becoming one of the first architectural offices to adopt robot technology. As more and more architects are exposed to robotic fabrication, the need for easy interoperability, integration into architectural design tools and general accessibility will increase. Architects are discovering that industrial robots are much more than kinematic machines for stacking bricks, welding or milling - they are highly multifunctional and can be used for a huge variety of tasks. However, industry standard software does not provide easy solutions for allowing direct robot control right from CAAD (Computer Aided Architectural Design) systems. In this paper we will discuss existing methods of programming industrial robots, published architectural results (Gramazio and Kohler 2008) and the design of a new user interface that allows intuitive control of parametric designs and customized robotic mass production, by integrating CAM (Computer Aided Manufacturing) functions into CAAD.
keywords robot programming; parametric design; mass customization; grasshopper component design; fabrication; robot milling; digital architecture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadiaregional2011_024
id acadiaregional2011_024
authors Hillukka, Daniel
year 2011
title Interior Climate Optimization by Volumetric Adjustment
doi https://doi.org/10.52842/conf.acadia.2011.x.j1c
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This research focuses primarily on the functionality of software, specifically Rhinoceros (McNeel & Assoc.) and a few associated PlugIns (Grasshopper, Rhino Assembly), to create and control a model of a building to study the environmental effects of modulation of space. Has technology been completely utilized in addressing comfort maintenance within a dwelling space? For example, animals have a similarities based upon their surface to volume relationship, yet they are able to adjust the ratios based on a reaction to their environmental circumstances. For example, when cold, they are able to “fluff” their fur in order to minimize their surface area in comparison to an increasing “interior” volume. Historically, abilities to influence temperature change within a space have been relegated to passive air exchange systems and more recently completely active air exchange means of control. Technological advances have raised significant questions towards methods and means for this control. Through use of 3D models and simulations, the topic of climate maintenance in spatial conditions was addressed using environmental controls. Thus modulation of the interior climate as well as the space could simultaneously occur to create a radically different space of habitation. The preparation and writing of this abstract addressed various areas of the SPC requirements, which become apparent during the digestion of the paper.
keywords Rhinoceros, Grasshopper, Rhino-Assembly, volume, operable architecture, parametric components, climate optimization, dynamic constructs
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p075
id cf2011_p075
authors Janssen, Patrick; Chen Kian Wee
year 2011
title Visual Dataflow Modelling: A Comparison of Three Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 801-816.
summary Visual programming languages enable users to create computer programs by manipulating graphical elements rather than by entering text. The difference between textual languages and visual languages is that most textual languages use a procedural programming model, while most visual languages use a dataflow programming model. When visual programming is applied to design, it results in a new modelling approach that we refer to 'visual dataflow modelling' (VDM). Recently, VDM has becoming increasingly popular within the design community, as it can accelerate the iterative design process, thereby allowing larger numbers of design possibilities to be explored. Furthermore, it is now also becoming an important tool in performance-based design approaches, since it may potentially enable the closing of the loop between design development and design evaluation. A number of CAD systems now provide VDM interfaces, allowing designers to define form generating procedures without having to resort to scripting or programming. However, these environments have certain weaknesses that limit their usability. This paper will analyse these weaknesses by comparing and contrasting three VDM environments: McNeel Grasshopper, Bentley Generative Components, and Sidefx Houdini. The paper will focus on five key areas: * Conditional logic allow rules to be applied to geometric entities that control how they behave. Such rules will typically be defined as if-then-else conditions, where an action will be executed if a particular condition is true. A more advanced version of this is the while loop, where the action within the loop will be repeatedly executed while a certain condition remains true. * Local coordinate systems allow geometric entities to be manipulated relative to some convenient local point of reference. These systems may be either two-dimensional or three-dimensional, using either Cartesian, cylindrical, or spherical systems. Techniques for mapping geometric entities from one coordinate system to another also need to be considered. * Duplication includes three types: simple duplication, endogenous duplication, and exogenous duplication. Simple duplication consists of copying some geometric entity a certain number of times, producing identical copies of the original. Endogenous duplication consist of copying some geometric entity by applying a set of transformations that are defined as part of the duplication process. Lastly, exogenous duplication consists of copying some geometric entity by applying a set of transformations that are defined by some other external geometry. * Part-whole relationships allow geometric entities to be grouped in various ways, based on the fundamental set-theoretic concept that entities can be members of sets, and sets can be members of other sets. Ways of aggregating data into both hierarchical and non-hierarchical structures, and ways of filtering data based on these structures need to be considered. * Spatial queries include relationships between geometric entities such as touching, crossing, overlapping, or containing. More advanced spatial queries include various distance based queries and various sorting queries (e.g. sorting all entities based on position) and filtering queries (e.g. finding all entities with a certain distance from a point). For each of these five areas, a simple benchmarking test case has been developed. For example, for conditional logic, the test case consists of a simple room with a single window with a condition: the window should always be in the longest north-facing wall. If the room is rotated or its dimensions changed, then the window must re-evaluate itself and possibly change position to a different wall. For each benchmarking test-case, visual programs are implemented in each of the three VDM environments. The visual programs are then compared and contrasted, focusing on two areas. First, the type of constructs used in each of these environments are compared and contrasted. Second, the cognitive complexity of the visual programming task in each of these environments are compared and contrasted.
keywords visual, dataflow, programming, parametric, modelling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_350
id acadia11_350
authors Kim, Simon; Yim, Mark; Laucharoen, Jedtsada; Wetmore, Michael; Salek, Sanam; Pan, Sam
year 2011
title Motion and Modular Architecture
doi https://doi.org/10.52842/conf.acadia.2011.350
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 350-357
summary This paper presents an implementation of an architectural module that corresponds to a long serial chain modular robot. As such, this configuration poses possibilities that can move using travelling wave gaits based on snakes and caterpillars. The gaits are controlled with a Gait Control Table which is a simple but powerful way to coordinate the motion of a multiple degree-of-freedom systems. The gaits are implemented on a self-sufficient modular reconfigurable robot with onboard power, computation, sensors and actuators.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p073
id cf2011_p073
authors Nasirova, Diliara; Erhan Halil, Huang Andy T, Woodbury Robert, Riecke Bernhard E.
year 2011
title Change Detection in 3D Parametric Systems: Human-Centered Interfaces for Change Visualization
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 751-764.
summary The research on current parametric modeling systems concerns mainly about the underlying computational technology and designs produced; and emphasizes less human factors and design tasks. We observe users being challenged in interacting with these systems regardless of their expertise level. In these systems, user’s attention is divided on system-imposed actions such as tool selection and set-up, managing obscured views, frequent view manipulation, and switching between different types of representations. In essence, control of the system can become more demanding than the design task itself. We argue that this unbalanced emphasis inhibits one of the most important functions of parametric design: agility in exploration of design alternatives by applying frequent user-introduced or system-generated changes on the parametric design models. This compounded by the effect of cognitive limitations such as change blindness and shifts in locus of attention hinders change control and imposes an extra cognitive load in design. In this paper, we made a first step in developing a set of heuristics that is going to present how designers’ change control and detection can be improved. We experimented with three interfaces that control and visualize changes on three different compositions in relation to the designer’s locus of attention: on-model, peripheral and combined views. We measured designers’ performance as the number of changes detected, number of trials, and time required to complete each change detection task. The results support our hypothesis that change blindness significantly slows down and overloads design thinking, and thus should not be ignored. Furthermore, an interesting finding shows that visualizations on the visual periphery can equally support change detection as on-model visualizations, but it is significantly easier and faster to detect changes when they are visualized in both views. These findings can guide us to develop better interfaces in 3D parametric systems.
keywords parametric design, change detection, change blindness, user-centered design, interface ergonomics, HCI, CAD, visualization
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 21HOMELOGIN (you are user _anon_311808 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002