CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 549

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
doi https://doi.org/10.52842/conf.acadia.2011.138
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
doi https://doi.org/10.52842/conf.acadia.2011.316
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id acadia11_112
id acadia11_112
authors Klinger, Kevin
year 2011
title Informing Design through Production Formulations
doi https://doi.org/10.52842/conf.acadia.2011.112
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 112-113
summary Over the decade of the aughts, architectural discourse has charted a new course, and in the wake of the digital effect on mainstream architectural thinking, we find ourselves in a great age of exploration. Research in digital fabrication has moved from the general to the specific, in that it aims to focus efforts related to technological impact on particular cases and variable parameters which contribute to even larger ideas, such as manufacturing, the social impact, sustainable practices, etc. Specific work on building components, coupled with a pragmatic rigor about durability, strength, and production have provided concrete examples of work that spin out of these design-through-production investigations. To be certain, each new design-through-production project explores unique territory and contributes to the knowledge map by adding to a matrix of possible applications. Still, we align our work with the age-old discipline of architectural thinking, while privileging “Making, Materials, Performance, Form, and Function.” Indeed, form is informed by performance! The principles that govern the human decision-making, in light of this new kind of digitally generated work have yet to be clearly articulated, but techniques and methods have expanded to create new opportunities for making architecture. In fact, research has tended to be less about framing the new principles for making digital architecture and more about adding specific cases to the knowledge base, as each new project helps to define the collective body.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:51

_id ecaade2011_163
id ecaade2011_163
authors Mark, Earl
year 2011
title Visualizing the Unknown in Historical Vernacular Architecture: Making Speculation from Archaeological Fragments Explicit
doi https://doi.org/10.52842/conf.ecaade.2011.868
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.868-874
summary Computer based visualization tools have the capacity to create convincing reconstructions of historical structures that appear to be authentic and complete but where inferences have been drawn from relatively limited evidence. The challenge is how to make the exciting process of discovery, argument and reasoning more self-evident in the model and also make known the alternative constructions that were plausible but less likely. This paper refers to two computer visualizations developed by the author for world heritage building sites. In both cases, a similar geometrical modeling technique was used. However, in the second case, the 3D modeling approach is developed for juxtaposition with captured dialogs, the evidence used, and the process followed so as to make level of speculation more explicit.
wos WOS:000335665500100
keywords Authentication; Three-Dimensional Digital Reconstruction; Archaeology; Parametric Modeling; Decision Tree
series eCAADe
email
last changed 2022/05/01 23:21

_id acadiaregional2011_027
id acadiaregional2011_027
authors Meniru, Kene
year 2011
title Modeling Building Information in a Parametric Environment
doi https://doi.org/10.52842/conf.acadia.2011.x.b9s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary The building design stage starts with an early effort by the architect to create a sketch which embodies the fundamental building knowledge that forms the basis for all later work. This knowledge is mostly lost in current building design practice procedures where the sketch is reduced to individual building components such as walls, floors, etc. By the time the building is constructed, new efforts have to be made to document information about the building necessary to control and maintain it during operation. This paper represents the next step to a Ph.D. study that describes the early building process and important features to support. It presents a sample design session from the study and based on observations from this session, it identifies and describes important digital objects that can be used to capture building knowledge in the sketch.
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2014_099
id sigradi2014_099
authors Paiva de Almeida, Álvaro José
year 2014
title Implantação de software BIM em curso de arquitetura [BIM application in course of architecture]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 49-52
summary This paper presents partial results from a process of a BIM application in the third period of the Architecture course of PUC Minas from August 2011. The study refers to a learning experience. It is, methodologically, an experimental research. The software learning process happens parallel to the design process. The students have to design a little house, with help of all disciplines of the period. The great advantage of BIM in the design process is that obtaining the details, cuts, plants, etc. occurs from detailed digital model of the building.
keywords Building Information Modeling; Desenho Digital; Desenho Arquitetônico; Projeto integrado; Metodologia de Projeto
series SIGRADI
email
last changed 2016/03/10 09:57

_id sigradi2011_091
id sigradi2011_091
authors Rodriguez Barros, Diana
year 2011
title Diseño de Productos y Modelado 3D Hiperrealistico. Un caso de enseñanza y práctica proyectual en entornos digitales [Product design and hyper realistic 3D model. A case of teaching and design practice in digital environments]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 411-414
summary We present a teaching experience carried out during the second quarter of 2010 in the Industrial Informatics 2 course of FAUD UNMdP Industrial Design Product oriented career, about three-dimensional and communication module. We tackle this practice, developed in the digital workshop environment, from the perspective of Design Thinking through an approach to the multidimensional implicit in the design process. The experience walked through the initial product selection and recognition of coding guidelines for design; redesign, 3D modeling and product prototyping; and result communicating. We consider have obtained multiple and original results to tackle, complement and resolve the design in virtual environments from the individual interests of students.
series SIGRADI
email
last changed 2016/03/10 09:59

_id sigradi2011_380
id sigradi2011_380
authors Sampaio Nardelli, Eduardo; Massaru Mavatari, Amaury; Cambiaghi, Henrique; Delatorre, Joyce Paula Martin; Azevedo Addor, Miriam Roux; Dardes de Almeida Castanho, Miriam
year 2011
title Teste de assertividade da biblioteca de componentes BIM do MDIC - Ministério do Desenvolvimento, Indústria e Comércio do Brasil [Assertiveness check of the BIM library components of MDIC - Ministry of Development, Industry and Commerce of Brazil]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 188-192
summary This paper presents an on going experiment which aims to check the assertiveness of the BIM library components of MDIC - Ministry of Development, Industry and Commerce of Brazil built and delivered in the site of this institution to support the design of Brazilian dwelling program "My home, my life". We've modeled a pre-designed social housing building and tried to extract from it the typical data that BIM process should delivery such as costs estimates, clash detection, building performance analyses, 4D and 5D planning. We have also done a check of exporting/importing the modeling to IFC and related the difficulties and the results that we have got.
keywords BIM; dwelling program; IFC; interoperability; building performance analyses
series SIGRADI
email
last changed 2016/03/10 09:59

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_18
id acadia11_18
authors Cheng, Nancy Yen-wen
year 2011
title Forewords: The Need for Nimble Thinking
doi https://doi.org/10.52842/conf.acadia.2011.018
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 18-19
summary The digital age demands fluid movement between different modes of thought. At its foundation, research requires patient study, what Malcolm Gladwell1 describes as the expertise that comes from practicing one thing for 10,000 hours. Careful observation and reflection yield the small insights that lead to bigger discoveries. Through experimenting, designers learn how to do things in an intuitive way, developing a deep tacit knowledge of actions that is hard to express in words.
series ACADIA
type introduction
email
last changed 2022/06/07 07:55

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2011_301
id sigradi2011_301
authors Cáceres Corvalán, Katherine; Calvo Castillo, Francisco
year 2011
title Pieles Responsivas: Desarrollo de Infraestructuras Adaptables a su Entorno [Responsive Skins: Development of environment adaptable infrastructures]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 139-142
summary This paper describes the authors' experience in the development and implementation of five academic instances linked to the research of design protocols based on parametric modeling and manufacturing techniques. The theme developed focus on the responsive skins, understood as a new kind of infrastructure capable of adapting to different geometric and topological configurations influenced by the information supplied from the environment at a specific time.
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2011_158
id sigradi2011_158
authors Davis, Felecia
year 2011
title Telephoning Textiles: Networked Soft Architectures
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 231-234
summary A textile receives a telephone call from a mobile telephone. This wearable textile is an innovative example of inter-layering and weaving together materials to make a composite soft material that can receive calls from mobile telephones. If a textile can be designed as a wearable shirt, as demonstrated in this paper, then many of these same fabrication techniques can be integrated into soft architecture at a scale large enough to shelter people. This project demonstrates networked soft materials; the project develops the concept of soft architecture and presents a new framework for building integrated architectural systems.
keywords Computational Textile; Soft Architecture; E-Textiles; Mobile Communications; Networked Wearables
series SIGRADI
email
last changed 2016/03/10 09:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_976907 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002