CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p092
id cf2011_p092
authors Bittermann, Michael S.
year 2011
title Sustainable Conceptual Building Design using a Cognitive System
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 297-314.
summary A cognitive system for conceptual building design is presented. It is based on an adaptive multi-objective evolutionary algorithm. The adaptive approach is novel and, in contrast with conventional multi-objective evolutionary algorithms, it explores the solution space effectively, while maintaining diversity among the solutions. The suitability of the approach for conceptual design of a multi-purpose building complex is demonstrated in an application. In the application, the goal of maximizing sustainability is treated by means of a model, which is established using neural computations. The approach is found to be suitable for treating the soft nature of the sustainability concept. Also, the capability of the approach to compare the performance of alternative solutions from an unbiased viewpoint, i.e. without committing a-priori to a relative importance among the performance aspects, is demonstrated.
keywords computational design, sustainable design, adaptive evolutionary algorithm, Pareto optimality, neural computation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.acadia.2011.114
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p110
id cf2011_p110
authors Mcmeel, Dermott
year 2011
title I think Therefore i-Phone: The influence of Pervasive Media on Collaboration and Multi-Disciplinary Group Work
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 69-84.
summary The study of value and its transfer during the multi-disciplinary process of design is stable fodder for research; an entire issue of Design Studies has been devoted to Values in the Design Process. By scrutinising design meetings Dantec (2009) and Ball (2009) separately examine the mechanisms of value transfer between the agents involved in design (clients, designers, engineers). Dantec suggests this is best understood in terms of requirement, values and narrative; Ball proposes it should be viewed as a combination of "analogical reasoning" and "environmental simulation". If we look at Vitruvius and his primary architectural manual (Pollio 1960) we find values‚Äîin the form of firmitas, utilitas and venustas‚Äîembedded in this early codification of architectural practice. However, as much current research is restricted to design practice what occurs when value frameworks move between domains of cultural activity (such as design to construction and vice-versa) is not privileged with a comparably sizable body of research. This paper is concerned with the ongoing usage of pervasive media and cellular phones within communications and value transfer across the disciplinary threshold of design and construction. Through participation in a building project we analyse the subtleties of interaction between analogue communication such as sketches and digitally sponsored communication such as e-mail and mobile phone usage. Analysing the communications between the designer and builder during construction suggests it is also a creative process and the distinctions between design and construction processes are complex and often blurred. This work provides an observational basis for understanding mobile computing as a dynamic ‚Äòtuning‚Äô device‚Äîas hypothesized by Richard Coyne (2010)‚Äîthat ameliorates the brittleness of communication between different disciplines. A follow up study deploys ‚Äòdigital fieldnotes‚Äô (dfn) a bespoke iPhone application designed to test further suppositions regarding the influence exerted upon group working by mobile computing. Within collaboration individual communiqu_©s have different levels of importance depending on the specific topic of discussion and the contributing participant. This project furthers the earlier study; expanding upon what mobile computing is and enabling us to infer how these emergent devices affect collaboration. Findings from these two investigations suggest that the synchronous and asynchronous clamour of analogue and digital tools that surround design and construction are not exclusively inefficiencies or disruptions to be expunged. Observational evidence suggests they may provide contingency and continue to have value attending to the relationship between static components‚Äîand the avoidance of failure‚Äîwithin a complex system such as design and construction.
keywords collaboration, design, mobile computing, digital media
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_122
id acadia11_122
authors Pigram, David; McGee, Wes
year 2011
title Formation Embedded Design: A methodology for the integration of fabrication constraints into architectural design
doi https://doi.org/10.52842/conf.acadia.2011.122
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 122-131
summary This paper presents a methodology for the integration of fabrication constraints within the architectural design process through custom written algorithms for fabrication. The method enables the translation from three-dimensional geometry, or algorithmically produced data, into appropriately formatted machine codes for direct CNC fabrication within a single CAD modeling environment. This process is traditionally one-way with part files translated via dedicated machine programming software (CAM). By integrating the toolpath creation into the design package, with an open framework, the translation from part to machine code can be automated, parametrically driven by the generative algorithms or explicitly modeled by the user. This integrated approach opens the possibility for direct and instantaneous feedback between fabrication constraints and design intent. The potentials of the method are shown by discussing the computational workflow and process integration of a diverse set of fabrication techniques in conjunction with a KUKA 7-Axis Industrial Robot. Two-dimensional knife-cutting, large-scale additive fabrication (foam deposition), robot-mounted hot-wire cutting, and robot-assisted rod-bending are each briefly described. The productive value of this research is that it opens the possibility of a much stronger network of feedback relations between formational design processes and material and fabrication concerns.
keywords robotic fabrication; multi-axis; file-to-factory, open-source fabrication, parametric modeling, computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id cf2011_p095
id cf2011_p095
authors Shin, Dongyoun; Muller Arisona Stefan, Schmitt Gerhard
year 2011
title Crowdsourcing Urban Simulation Platform Using Mobile Devices and Social Networking Media Technologies
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 233-246.
summary Introduction and Research Questions The research area of urban simulation methods has grown notably in recent decades. Most of the research topics that concern urban simulation have concentrated on defining the complexities of urban environments with certain rules and algorithms. However, cities are getting more complex and changes to them are being made at greater speed. Therefore, current urban simulation modeling approaches based on rules and protocols are still struggling to reduce the gap between the virtual simulation environment and the real cities, since the behavior of citizens is frequently unpredictable and continuously adapting. In this context, research is necessary to develop more fundamental simulation methods that can handle these complexities and changes, leading to new design decision support systems. Therefore, this research was motivated with the following questions: What is the origin of the complexities and transformations of the urban environment? How can we approach the origin to deal with the urban complexities and transformations? To answer these questions, we hypothesize that the diverse human intentions are the origin of the issues that result from all of the complexities and changes of the cities. General Objectives As a result, we propose a participatory simulation environment that brings human intention into the urban simulator: a crowdsourcing [1] simulation platform that is operated by the people‚Äôs participation. To achieve this crowdsourcing urban sustainability simulation environment, we must address the following research issues: categorization of urban sustainability indicators and technologies, inducing mass participations, and an implementation of social network services. Furthermore, we aim at using mobile computing devices, such as smart phones, as a terminal to the simulation environment. Fundamental Goals Our goal is to enable people to share urban information at any time and to compare each other‚Äôs contributions through the crowdsourcing urban simulation platform. The information will be returned to the citizens to support their sustainability-aware life. The simulation platform also gives a chance not only to compare each other‚Äôs levels of sustainability, but also to give self-satisfaction through an altruistic contribution for a sustainable future. Thus, people shall utilize the simulator in order to predict their individual or cities‚Äô future sustainability. Meanwhile, the user data will be collected and delivered to the central server in order to analyze the urban sustainability. Consequently, we can measure the urban sustainability based on a real human interaction, and compare individuals as well as cities. The whole process of this research is presented as a new paradigm of an urban simulator that reflects the urban complexities and the inconstant human mind changes. Specific Objectives of This Paper This paper will represent strategies of the crowdsourcing urban simulation which can make a paradigm shift of urban simulation and shall define the customized sustainable indicators for the initial steps of this research. It shows how as system for can communicate with the public using the current technologies: high performance mobile media, social network services and wide-area geospatial information systems. Furthermore, for the first step of this research, the paper defines the urban sustainability indicators, and their categorization is generalized and translated into simpler ways to support the citizen‚ intuitive understanding.
keywords Crowdsourcing, Urban sustainability, Multi-agent based simulation, Social network services
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p099
id cf2011_p099
authors Huang, Andy; Erhan Halil, Woodbury Robert, Nasirova Diliara, Kozlova Karine
year 2011
title Collaboration Workflow Simplified: Reduction of Device Overhead for Integrated Design Collaboration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 591-602.
summary Design collaboration relies on cognitive tools such as analog media and digital peripheral devices, and shows the characteristics of distributed cognition. It is a social and complex activity involving multiple agents communicating and using external cognitive tools to encode, decode, and share information in the process of collaborative task completion. The systems supporting this activity should meet the ’principle of least collaboration effort’ [4] that proposes that agents in collaboration minimize their effort in presentation and acceptance of information. Yet, current collaboration systems are dispersed mixed media that is often overloaded with representations and functionality, thus preventing seam- less information sharing. Designers are required to spend extra effort collecting information using peripheral devices and in system management when sharing information. The goal of this study is to understand these overheads in infor- mation collection and sharing using peripheral devices, and to provide designers with a supportive platform to enhance collaboration using both analog and digital media. In this paper, we first review available peripheral devices such as smart pens, digital cameras, and voice recorders, as well as existing collaboration sup- porting software systems for their benefits and deficiencies in collaboration. We then present ’DiNa’, a collaboration platform that is envisioned to improve pro- ductivity and reduce redundant work by integrating peripheral devices into the collaboration workflow. We demonstrate a possible workflow using this system through several scenarios where designers collaborate in performing a series of design tasks. We hope to bring attention to the importance least collaborative effort in designing systems to support real-world collaboration.
keywords Collaboration, Peripheral Devices, Knowledge Collection, Human Computer Interaction, Computer Aided Design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_017
id acadiaregional2011_017
authors Narahara, Taro
year 2011
title Beyond Quantitative Simulations: Local Control Strategy Using Architectural Comonents
doi https://doi.org/10.52842/conf.acadia.2011.x.o7a
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Design of universal components that can tolerate technological, environmental, and circumstantial changes over time is a challenge for an architect. In this paper, I would like to propose a scaled prototype of architectural components that can reconfigure themselves into globally functional configurations based on feedback from locally distributed intelligence embedded inside the component. The project aims at demonstrating a design system that can respond to dynamically changing environment over time without imposing a static blueprint of the structure in a top-down manner from the outset of design processes. The control of the subunits are governed by the logic of a distributed system simulated by the use of multiple microcontrollers, and appropriate geometrical configurations will be computationally derived based on physical-environmental criteria such as solar radiation from various sensors and social-programmatic issues. The system’s goal is to provide qualitatively optimum results through the use of quantified information acquired from surrounding environmental conditions.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p112
id cf2011_p112
authors Schlueter, Arno
year 2011
title Integrated Design Process for Prefabricated Façade Modules with Embedded Distributed Service Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 419-434.
summary The awareness of the environmental impact of buildings concerning their CO2 emissions, their energy and resource consumption has raised the challenges on building design, construction and operation. Building service systems are among the main contributors to building related emissions. Their consideration already in design is therefore of growing importance. Distributed service systems represent a new paradigm towards the supply of a building with energy and matter. Being small, efficient and networked, they can be distributed within the building fabric to allow an efficiently supply of the building space. Their employment, however, affects the spatial layout, construction and resulting building performance. In order to capture the resulting complex dependencies, a strategy to integrate such systems into the architectural design process is necessary. In this work a design process is proposed, that integrates distributed service systems into building design, dissolving the classical divide between architectural design and service systems layout. Digital modelling and computational methods are employed to create and analyse design solutions, visualize performance criteria and provide the relevant data for the intended digital fabrication process. The process is exemplified using a joint university-industry case study project focusing on parametric façade modules, developed in a seamless digital process from concept to fabrication.
keywords integrated design, design process, performance assessment, digital fabrication, distributed building service systems
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p116
id cf2011_p116
authors Stavric, Milena; Wiltsche Albert
year 2011
title Ornamental Plate Shell Structures
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 817-832.
summary The development of digital technologies in the last twenty years has led to an unprecedented formal freedom in design and in the representation in virtual space. Combining non-standard geometry with CAD tools enables a new way of expression and realization of architectural ideas and conceptions. The transformation of a virtual double-curved surface into a buildable physical structure and object is always accompanied by huge costs and big problems like geometric and statical ones. Our structure is a type of shell structure consisting of plane panels. The load bearing system is organized in a way so that the forces are distributed along the edges of the plane elements. A structure with plane elements supports a high stiffness in combination with a relatively small overall weight. This is due to smooth curved shape of the geometry. We show geometric methods how to control the construction of curved surfaces out of planar building elements. The approach is based on the discretization of the surfaces by plane elements derived from tangent planes. The novel process in this work is that we take the surface curvature at local points into account. This solves former problems which occurred when intersecting the planes. The fact that there is an infinite number of possibilities when selecting tangent planes on a surface raises the issue of the way and conditions which make it possible to select specific tangent planes whose intersection would produce a desired three-dimensional shape. In order to satisfy also aesthetical requirements we engage plane geometrical patterns and ornaments and transfer them into spatial shape. So a three-dimensional ornamental shape is deduced from a two-dimensional ornament. Another task which will be showed is how to limit the infinite range of possibilities to generate a preferred spatial ornament and on what conditions surface tessellation would be ornamental in character, i.e. it would generate not only the functional, but also the aesthetic component of a free-form surface.
keywords ornament, discretization, free-form surfaces
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_326
id acadia11_326
authors Velikov, Kathy; Thün, Geoffrey; O’Malley, Mary; Ripley, Colin
year 2011
title Toward Responsive Atmospheres: Prototype Exploration through Material and Computational Systems
doi https://doi.org/10.52842/conf.acadia.2011.326
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 326-333
summary The Stratus Project is an ongoing body of design research investigating the potential for kinetic, sensing and environment-responsive interior envelope systems. The research emerges from a consideration of our attunement to the soft systems of architecture – light, thermal gradients, air quality and noise – paired with a desire to develop and prototype envelopes that not only perform to affect these atmospheres, but also to promote continual information and material exchange, and eventually dialogue, between occupant and atmosphere. Stratus v1.0 included the construction of a modest prototype using simple open source technologies, aimed to explore the formal, operational and technological possibilities, as well as potential operability and control conflicts, as part of the first phase of thinking around these questions. It deploys a distributed approach to structural, mechanical and communications systems design and delivery, where localized response is prioritized. The project works to reclaim the environmentally performative elements of architecture – in this case, specifically, interior mechanical delivery and interface systems – to within the purview of the discipline, as territories of material, formal, technological and experiential innovation and exploration. This paper will describe both the development of the current prototype as well as future research and investigation trajectories. The Stratus Project begins by situating itself at the crossroads of the disciplinary territories of architecture, technology, environmental control and cybernetics. Through the use of computational technologies and in collaboration with researchers in the fields of computer science, mechanical engineering and materials science, this project aims to advance the development of responsive environmental design and performative building skins.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 745e
id 745e
authors Derix C, Kimpian J, Mason J and Karanouh A
year 2011
title Feedback Architecture
source In Terri Peters (ed), Experimental Green Strategies: Ecological Design Research: Architectural Design (AD), Wiley and Sons, Nov-Dec 2011
summary Sustainable design and ecological building are the most significant global challenges for the design profession. To meet new building regulations and national targets for carbon emissions, all future buildings will be judged on their ‘green’ merits. For architects to maintain a competitive edge in a global market, innovation is now key; the design of new processes, technologies and materials that combat carbon emissions and improve the sustainable performance of buildings are paramount. Contemporary practices have responded by setting up multi- disciplinary internal research and development teams, with offices such as Foster + Partners, HOK and Aedas setting the bar for ground-breaking research and development. The aim of internal groups is often to adapt and create new technologies and materials and to borrow ways of working from other disciplines, to focus on innovation rather than incrementally increasing performance or efficiency. This title offers insights into how a wide range of established and emerging practices are rising to meet these challenges. In pursuit of integrated sustainability and low-energy building, material and formal innovation and new tools and technologies, it illustrates that the future of architecture is evolving in an exchange of ideas across disciplines. Incorporating the creation of new knowledge about ecological building within the profession, it also identifies the emergence of a collective will to seek out new routes that build in harmony with the environment.
keywords sustainability, morphology, performance, design computation
series journal paper
type normal paper
email
more http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047068979X.html
last changed 2012/09/20 17:07

_id ijac20109205
id ijac20109205
authors Hudson, Roly; Paul Shepherd, David Hines
year 2011
title Aviva Stadium: A case study in integrated parametric design
source International Journal of Architectural Computing vol. 9 - no. 2, 187-204
summary The nature of large complex buildings requires specialized skills across a multi-disciplinary team and high levels of collaboration and communication. By taking a parametric approach to design and construction, high quality results can be delivered on budget on time. This type of approach facilitates the opportunity for design teams to work in an iterative manner.A parametric model reduces the time associated with complex design changes while providing a centralized method for coordinating communication. In this paper the recently completed Aviva Stadium is used to illustrate the ways in which these benefits manifest themselves on built work.The authors identify the moments in the design and construction process that truly justify the effort in implementing a parametric approach. By approaching design in this way a “design conversation” can take place between parties involved, resulting in a better building.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_170019 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002