CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 561

_id cf2011_p075
id cf2011_p075
authors Janssen, Patrick; Chen Kian Wee
year 2011
title Visual Dataflow Modelling: A Comparison of Three Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 801-816.
summary Visual programming languages enable users to create computer programs by manipulating graphical elements rather than by entering text. The difference between textual languages and visual languages is that most textual languages use a procedural programming model, while most visual languages use a dataflow programming model. When visual programming is applied to design, it results in a new modelling approach that we refer to 'visual dataflow modelling' (VDM). Recently, VDM has becoming increasingly popular within the design community, as it can accelerate the iterative design process, thereby allowing larger numbers of design possibilities to be explored. Furthermore, it is now also becoming an important tool in performance-based design approaches, since it may potentially enable the closing of the loop between design development and design evaluation. A number of CAD systems now provide VDM interfaces, allowing designers to define form generating procedures without having to resort to scripting or programming. However, these environments have certain weaknesses that limit their usability. This paper will analyse these weaknesses by comparing and contrasting three VDM environments: McNeel Grasshopper, Bentley Generative Components, and Sidefx Houdini. The paper will focus on five key areas: * Conditional logic allow rules to be applied to geometric entities that control how they behave. Such rules will typically be defined as if-then-else conditions, where an action will be executed if a particular condition is true. A more advanced version of this is the while loop, where the action within the loop will be repeatedly executed while a certain condition remains true. * Local coordinate systems allow geometric entities to be manipulated relative to some convenient local point of reference. These systems may be either two-dimensional or three-dimensional, using either Cartesian, cylindrical, or spherical systems. Techniques for mapping geometric entities from one coordinate system to another also need to be considered. * Duplication includes three types: simple duplication, endogenous duplication, and exogenous duplication. Simple duplication consists of copying some geometric entity a certain number of times, producing identical copies of the original. Endogenous duplication consist of copying some geometric entity by applying a set of transformations that are defined as part of the duplication process. Lastly, exogenous duplication consists of copying some geometric entity by applying a set of transformations that are defined by some other external geometry. * Part-whole relationships allow geometric entities to be grouped in various ways, based on the fundamental set-theoretic concept that entities can be members of sets, and sets can be members of other sets. Ways of aggregating data into both hierarchical and non-hierarchical structures, and ways of filtering data based on these structures need to be considered. * Spatial queries include relationships between geometric entities such as touching, crossing, overlapping, or containing. More advanced spatial queries include various distance based queries and various sorting queries (e.g. sorting all entities based on position) and filtering queries (e.g. finding all entities with a certain distance from a point). For each of these five areas, a simple benchmarking test case has been developed. For example, for conditional logic, the test case consists of a simple room with a single window with a condition: the window should always be in the longest north-facing wall. If the room is rotated or its dimensions changed, then the window must re-evaluate itself and possibly change position to a different wall. For each benchmarking test-case, visual programs are implemented in each of the three VDM environments. The visual programs are then compared and contrasted, focusing on two areas. First, the type of constructs used in each of these environments are compared and contrasted. Second, the cognitive complexity of the visual programming task in each of these environments are compared and contrasted.
keywords visual, dataflow, programming, parametric, modelling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia24_v2_82
id acadia24_v2_82
authors Rietschel, Moritz; Guo, Fang; Steinfeld, Kyle
year 2024
title Mediating Modes of Thought: Large Language Models for Design Scripting
source ACADIA 2024: Designing Change [Volume 2: Proceedings of the 44th Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-8-9]. Calgary. 11-16 November 2024. edited by Alicia Nahmad-Vazquez, Jason Johnson, Joshua Taron, Jinmo Rhee, Daniel Hapton. pp. 513-522
summary Architects adopt visual scripting and parametric design tools to explore more expansive design spaces (Coates 2010), refine their thinking about the geometric logic of their design (Woodbury 2010), and overcome conventional software limitations (Burry 2011). Despite two decades of effort to make design scripting more accessible, a disconnect between a designer's free ways of thinking and the rigidity of algorithms remains (Burry 2011). Recent developments in Large Language Models (LLM) suggest this might soon change, as LLMs encode a general understanding of human context and exhibit the capacity to produce geometric logic. This project speculates that if LLMs can effectively mediate between user intent and algorithms they become a powerful tool to make scripting in design more widespread and fun. We explore if such systems can interpret natural language prompts to assemble geometric operations relevant to computational design scripting. In the system, multiple layers of LLM agents are configured with specific context to infer the user intent and construct a sequential logic. Given a user’s high-level text prompt, a geometric description is created, distilled into a sequence of logic operations, and mapped to software-specific commands. The completed script is constructed in the user's visual programming interface. The system succeeds in generating complete visual scripts up to a certain complexity but fails beyond this complexity threshold. It shows how LLMs can make design scripting much more aligned with human creativity and thought. Future research should explore conversational interactions, expand to multimodal inputs and outputs, and assess the performance of these tools.
series ACADIA
type paper
email
last changed 2025/07/21 11:42

_id ecaaderis2018_103
id ecaaderis2018_103
authors Davidová, Marie and Prokop, Šimon
year 2018
title TreeHugger - The Eco-Systemic Prototypical Urban Intervention
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 75-84
keywords The paper discusses co-design, development, production, application of TreeHugger (see Figure 1). The co-design among community and trans-disciplinary participants with different expertise required scope of media mix, switching between analogue, digital and back again. This involves different degrees of physical and digital 'GIGA-Mapping' (Sevaldson, 2011, 2015), 'Grasshopper3d' (Davidson, 2017) scripting and mix of digital and analogue fabrication to address the real life world. The critical participation of this 'Time-Based Design' (Sevaldson, 2004, 2005) process is the interaction of the prototype with eco-systemic agency of the adjacent environment - the eco-systemic performance. The TreeHugger is a responsive solid wood insect hotel, generating habitats and edible landscaping (Creasy, 2004) on bio-tope in city centre of Prague. To extend the impact, the code was uploaded for communities to download, local-specifically edit and apply worldwide. Thus, the fusion of discussed processes is multi-scaled and multi-layered, utilised in emerging design field: Systemic Approach to Architectural Performance.
series eCAADe
email
last changed 2018/05/29 14:33

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p152
id cf2011_p152
authors Plume, Jim; Mitchell John
year 2011
title An Urban Information Framework to support Planning, Decision-Making & Urban Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 653-668.
summary This paper reports on a 2-year research project undertaken in collaboration with a state planning authority, a major city municipal council and a government-owned development organisation. The project has involved the design of an urban information model framework with the aim of supporting more informed urban planning by addressing the intersection where an individual building interfaces with its urban context. This adopted approach enables new techniques that better model the city and its processes in a transparent and accessible manner. The primary driver for this project was the challenge provided by the essential incompatibility between legacy GIS (geographic information system) datasets and BIM (building information model) representations of the built form. When dealing with urban scale information, GIS technologies use an overlay mapping metaphor linked to traditional relational database technologies to identify features or regions in the urban landscape and attach attribute data to those in order to permit analysis and informed assessment of the urban form. On the other hand, BIM technologies adopt an object-oriented approach to model the full three-dimensional characteristics of built forms in a way that captures both the geometric and physical attributes of the parts that make up a building, as well as the relationships between those parts and the spaces defined by the building fabric. The latter provides a far richer semantic structure to the data, while the former provides robust tools for a wide range of urban analyses. Both approaches are widely recognised as serving well the needs of their respective domains, but there is a widespread belief that we need to reconcile the two disparate approaches to modelling the real world. This project has sought to address that disjunction between modelling approaches. The UrbanIT project concentrated on two aspects of this issue: the development of a framework for managing information at the precinct and building level through the adoption of an object-oriented database technology that provides a platform for information management; and an exploration of ontology tools and how they can be adopted to facilitate semantic information queries across diverse data sources based on a common urban ontology. This paper is focussed on the first of those two agendas, examining the context of the work, the challenges addressed by the framework and the structure of our solution. A prototype implementation of the framework is illustrated through an urban precinct currently undergoing renewal and redevelopment, finishing with a discussion of future work that comes out of this project. Our approach to the implementation of the urban information model has been to propose extensions to ISO/PAS 16739, the international standard for modelling building information that is commonly known as IFC (Industry Foundation Classes). Our reason for adopting that approach is primarily our deep commitment to the adoption of open standards to facilitate the exchange of information across the built environment professions, but also because IFC is based on a robust object schema that can be used to construct a internet-accessible database able, theoretically, to handle the vast quantity of data needed to model urban-scale information. The database solution comes with well-established protocols for handling data security, integrity, versioning and transaction processing or querying. A central issue addressed through this work is concerned with level of detail. An urban information model permits a very precise and detailed representation of an urban precinct, while many planning analyses rely on simplified object representations. We will show that a key benefit of our approach is the ability to simultaneously maintain multiple representations of objects, making use of the concept of model view definitions to manage diverse analysis needs.
keywords urban information modelling, geographic information systems, city models, interoperability, urban planning, open standards
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_411
id sigradi2011_411
authors Pujol, Mónica; Farkas Monica; Feinsilber, Sebastián; Cruz, Diego; Mato, Gastón
year 2011
title Dispositivos de visualización y cartografías digitales del Diseño [Visualization devices and digital mapping of Design]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 391-394
summary As part of the UBACyT A038 Digital Map Buenos Aires City Design research project, we propose, on the one hand, to examine the misalignments detected between the development of interfaces and the technological developments available for accessibility to complex information systems, applied to map the field of design; on the other hand, to show the advances achieved in the realization of a digital visual device that enables collaborative data input that allows visualization of the different variables of the design state in Buenos Aires, through digital processing and analytical interpretation of information.
series SIGRADI
email
last changed 2016/03/10 09:58

_id cf2011_p011
id cf2011_p011
authors Verdonck, Evelien; Lieve Weytjens, Verbeeck Griet, Froyen Hubert
year 2011
title Design Support Tools in Practice. The Architects' Perspective
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 769-784.
summary In recent years, a large number of design support tools (DSTs) have been developed to address the ever increasing complexity and fragmentation of the architectural design process. Despite the omnipresence and the wide variety of DSTs available to architects today, literature reveals that there is still a mismatch between existing tools and design practice. Further examination of this discrepancy might reveal possible strategies for the improvement of tools. Therefore, this study investigates the Flemish architectural practice directly through a large-scale survey including 629 architects (nearly 10% of the population). The survey was based on a practice-oriented conceptual framework, which was developed as a theoretical background for this study. First the nature of the design process was explored through extensive literature review. In addition to this, a study of tools and possible classifications was carried out. Although numerous studies are available that provide a possible classification, most focus on specific design aspects, for instance sustainability or user-centered design. However, there is no general outline of tools available that would be adequate for the purpose of this research. The DSTs included in this study range from sketches and checklists to 3D CAD and simulation software, in other words any instrument intended to support one or more aspects of the design process. The findings from both literature studies were synthesized in the conceptual framework. This framework presents the design process as a linear process, consisting of the conceptual design phase, the preliminary design phase, the building permission phase, and the construction phase. Six categories of tools were defined, according to the roles they play in the design process, namely knowledge-based, presentation, evaluation/analysis, structuring, modeling, and communication. A tool can belong to one or more categories. The mapping of these roles on the design process resulted in the final framework, which was then used as a base for the questionnaire. The survey aimed at gaining insight into the different DSTs and their corresponding roles, as well as the design phases in which they are used or most needed by Flemish architects in architectural practice. In addition to this, the survey contained questions about the influence of tools on design decision-making, and the specific characteristics and qualities the designers prefer for design support tools. A final part of the survey asked about general background information, such as the respondents’ age, size of architectural firm and types of projects usually undertaken. The results of the survey reveal that there are distinctly different needs for each of the roles defined, as well as a specific frequency of use within each design phase. Furthermore, the most popular tools often encompass multiple roles. Additionally, clear expectations for future tools are defined. Finally, the data collected show researchers and tool developers what kind of support designers need in the different stages of the design process, and may help them to develop DSTs accordingly, to maximize their usability and eventually contribute to decrease the gap between tools and practice.
keywords design tools, architectural design process, survey
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_328
id sigradi2011_328
authors Arenas, Felipe; Banda, Pablo
year 2011
title Morfología de Datos y Desterritorialización: Integrando sentido al diseño paramétrico [Data Morphology and Deterritorialization: Integrating meaning into Parametric Design]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 381-385
summary This paper reflects about the potential of integrating meaning into parametrics that can be produced by the linkage between information visualization interfaces and custom parametric modeling systems. The inclusion of unstable semantics from web-based geo-referenced information is proposed, as driver for producing extreme differentiation and systemic complexity in contemporary design practices.
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
doi https://doi.org/10.52842/conf.acadia.2011.170
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2011_063
id ecaade2011_063
authors Garner, Steve; Schadewitz, Nicole; Holden, Georgina; Zamenopoulos, Theodore; Alexiou, Katerina
year 2011
title Supporting Fragility in Distance Design Education
doi https://doi.org/10.52842/conf.ecaade.2011.663
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.663-672
wos WOS:000335665500077
summary This paper outlines work in progress that seeks to support and develop online distance design education for adult learners. At the core of this paper is the belief that design thinking is fragile and the systems we create to support design thinking are fragile. This has important implications for those seeking to implement immersive environments for teaching and learning in disciplines such as engineering, product design, environment design and architecture. This paper suggests we need to look backwards in order to look forwards; that by examining the characteristics of the traditional ‘atelier’ model of art and design education we might observe clues to a framework of teaching and learning in design that can embrace the opportunities presented by new digital technologies. The paper focuses on the use of Second Life as a component of a wider virtual design atelier and explores how Second Life might potentially offers a means of addressing fragile collaborative learning.
keywords Design; atelier; ARCHI21; education
series eCAADe
email
last changed 2022/05/01 23:21

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id cf2011_p073
id cf2011_p073
authors Nasirova, Diliara; Erhan Halil, Huang Andy T, Woodbury Robert, Riecke Bernhard E.
year 2011
title Change Detection in 3D Parametric Systems: Human-Centered Interfaces for Change Visualization
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 751-764.
summary The research on current parametric modeling systems concerns mainly about the underlying computational technology and designs produced; and emphasizes less human factors and design tasks. We observe users being challenged in interacting with these systems regardless of their expertise level. In these systems, user’s attention is divided on system-imposed actions such as tool selection and set-up, managing obscured views, frequent view manipulation, and switching between different types of representations. In essence, control of the system can become more demanding than the design task itself. We argue that this unbalanced emphasis inhibits one of the most important functions of parametric design: agility in exploration of design alternatives by applying frequent user-introduced or system-generated changes on the parametric design models. This compounded by the effect of cognitive limitations such as change blindness and shifts in locus of attention hinders change control and imposes an extra cognitive load in design. In this paper, we made a first step in developing a set of heuristics that is going to present how designers’ change control and detection can be improved. We experimented with three interfaces that control and visualize changes on three different compositions in relation to the designer’s locus of attention: on-model, peripheral and combined views. We measured designers’ performance as the number of changes detected, number of trials, and time required to complete each change detection task. The results support our hypothesis that change blindness significantly slows down and overloads design thinking, and thus should not be ignored. Furthermore, an interesting finding shows that visualizations on the visual periphery can equally support change detection as on-model visualizations, but it is significantly easier and faster to detect changes when they are visualized in both views. These findings can guide us to develop better interfaces in 3D parametric systems.
keywords parametric design, change detection, change blindness, user-centered design, interface ergonomics, HCI, CAD, visualization
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_047
id caadria2011_047
authors Ostwald, Michael J.; Josephine Vaughan and Stephan K. Chalup
year 2011
title Data flow and processing in the computational fractal analysis method
doi https://doi.org/10.52842/conf.caadria.2011.493
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 493-502
summary One of the few quantitative methods available for the consistent analysis of architectural form is the ‘box-counting’ approach to determining the approximate fractal dimension of a plan or elevation. In its computational form this method has been used to analyze the plans and facades of a wide range of buildings. The data points produced are synthesized by the software into a series of fractal dimension (D) values that are in turn compiled in various ways to produce a series of composite results describing a complete building. Once this process is complete the data may be coded with additional information producing a set of mathematical results that describe the form of a building. This paper offers the first complete description of this important analytical process from the point of view of information flow, algorithmic operations, review options and data magnitude. No previous paper has detailed the full scope of the data used in the computational method, or the way in which various stages produce different types of outcomes. The purpose of this paper is to elucidate the way in which this particular computational method, drawing its inspiration from the complexity in natural systems, may be used to process different types of information and produce various forms of quantitative data to support architectural design and analysis.
keywords Fractal analysis; computational analysis
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia11_106
id acadia11_106
authors Parsons, Ronnie; Akos, Gil
year 2011
title Form Force Matter: Investigating form-active systems through analog machines and physics-based simulation
doi https://doi.org/10.52842/conf.acadia.2011.106
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 106-109
summary Form-active Systems offer an intuitive means of gaining direct and tangible knowledge for addressing architectural design problems with degrees of complexity typically beyond our capacity or desire to engage as designers. With these systems as a mechanism for research, we may establish a rich territory in which form, force, and matter are inherently imbricated in their conceptual domain. Furthermore, if we approach this conceptual terrain with an understanding that the elements of these systems exist along a continuum between the real and the virtual, we may incorporate methods and techniques in the form of analog machines and physics-based simulation from architecture’s peripheral fields of structural engineering, physics, and computation. This paper presents an applied research framework undertaken in a continued sequence of seminars whereby Form-active Systems are analyzed for their performative characteristics, synthesized for operative design strategies, iteratively prototyped across scales, and redeployed within the context of a multi-story installation.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id ecaade2011_125
id ecaade2011_125
authors Sarhan, Ahmed; Rutherford, Peter
year 2011
title Environmental Design eTutor: Utilizing Games Technology for Environmental Design Education
doi https://doi.org/10.52842/conf.ecaade.2011.699
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.699-708
wos WOS:000335665500081
summary The design paradigm has shifted from addressing geometric masses and social spaces to integrate a whole new set of variables and criteria evolving from the environmental aspect of the design. Architectural design is confronting a mounting challenge with the ever-growing complexity of design concepts and the increasing pressure to incorporate aspects of energy preservation and sustainability. Such challenge is clearly noted and sensed within the pedagogical realm. There are many calls to bridge the gap through assisting design students to assimilate environmental analysis data in their design and decision making process. This paper presents a framework for a proposed method and relating tools aiming to utilize games technology with multi-agent systems and data mining techniques to assist design students and untrained professionals in comprehending various aspects of environmental design, with guidelines to incorporate these aspects in their design iteration process.
keywords Environmental Design Education; Building Performance Simulation; Games Technology; Multi-Agent Systems; Data Mining
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_326
id acadia11_326
authors Velikov, Kathy; Thün, Geoffrey; O’Malley, Mary; Ripley, Colin
year 2011
title Toward Responsive Atmospheres: Prototype Exploration through Material and Computational Systems
doi https://doi.org/10.52842/conf.acadia.2011.326
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 326-333
summary The Stratus Project is an ongoing body of design research investigating the potential for kinetic, sensing and environment-responsive interior envelope systems. The research emerges from a consideration of our attunement to the soft systems of architecture – light, thermal gradients, air quality and noise – paired with a desire to develop and prototype envelopes that not only perform to affect these atmospheres, but also to promote continual information and material exchange, and eventually dialogue, between occupant and atmosphere. Stratus v1.0 included the construction of a modest prototype using simple open source technologies, aimed to explore the formal, operational and technological possibilities, as well as potential operability and control conflicts, as part of the first phase of thinking around these questions. It deploys a distributed approach to structural, mechanical and communications systems design and delivery, where localized response is prioritized. The project works to reclaim the environmentally performative elements of architecture – in this case, specifically, interior mechanical delivery and interface systems – to within the purview of the discipline, as territories of material, formal, technological and experiential innovation and exploration. This paper will describe both the development of the current prototype as well as future research and investigation trajectories. The Stratus Project begins by situating itself at the crossroads of the disciplinary territories of architecture, technology, environmental control and cybernetics. Through the use of computational technologies and in collaboration with researchers in the fields of computer science, mechanical engineering and materials science, this project aims to advance the development of responsive environmental design and performative building skins.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_370248 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002