CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 484

_id ecaade2011_069
id ecaade2011_069
authors Lee, Seongki
year 2011
title Feasibility Computation of the Perimeter Block Housing in Early Design Process: A Perimeter Block Housing Design based on Zone Ordinance of Seoul
doi https://doi.org/10.52842/conf.ecaade.2011.235
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.235-244
summary The goal of this paper is to present the feasibility computing tool for the perimeter block housing design in early design process. Firstly, the paper describes briefly issues of perimeter block housing focusing on block design cases of Seoul. Secondly, constraints and requirements of perimeter block housing are analysed and formulated based on specific zone ordinance and regulation. Thirdly application of half-edge data structure is presented for interconnected geometric problem solving. Fourthly, multi-objective optimization algorithm developed is shortly explained as problem solving method. Finally, feasibility-computing software using Java object oriented programming is developed. This can contribute to the tool development that can generate, optimize, evaluate and visualize perimeter block housings in early phases of design process by providing reliable design solutions for stakeholders.
wos WOS:000335665500026
keywords Perimeter block housing; design-constraints; parametric design; multi-objective optimization problem; design support system
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
doi https://doi.org/10.52842/conf.acadia.2011.300
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 26ce
id 26ce
authors Facklam, Ferdinand; Pecegueiro Curado, Felipe
year 2011
title Data Driven Parametric Design
source PARC Journal - Issue 7
summary In the case study “Live Building” explains a sensory process. The project shows how to collect data,transformed and transported into a shape. Innovation is not only the approach of the draft, but the systematic procedure and the resulting diversity of solutions. The search for the geometric shape and the key to the concept will be answered in detail.
keywords Architecture, Computer Systems, Parametric Design, Sensor Technology, Urban Development
series journal paper
type normal paper
email
more http://www.fec.unicamp.br/~parc/vol2/n7/parc07_facklan.pdf
last changed 2011/10/28 11:01

_id acadia11_98
id acadia11_98
authors Kudless, Andrew
year 2011
title Bodies in Formation: The material evolution of flexible formworks
doi https://doi.org/10.52842/conf.acadia.2011.098
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 98-105
summary Borne from the complex negotiation between liquid mass and tensile constraint, flexible formwork castings are resonant with material energy. Hard as stone, yet visually supple and fluid, the pre-cast architectural assemblies produced using flexible formwork techniques suggest integrative design strategies that acknowledge the intricate associations between form, fabrication, and material behavior. This tripartite synthesis between geometry, making, and performance has emerged as one of the central themes of contemporary architecture and engineering. Borrowing ideas of morphology from biology and physics, 20th century architectural innovators such as Antoni Gaudi and Frei Otto built a legacy of material practice that incorporated methods of making with material and geometric logics. The emergent effects (and affects) produced through these highly integrative practices serve as the basis of much of the research and design at Matsys. Building on the flexible formwork research of Miguel Fisac in the 1970s, the P_Wall series by Matsys explores the use of digital tools in the generation and fabrication of these bodies in formation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia11_396
id acadia11_396
authors Lim, Jason
year 2011
title Let’s Work Together: A Stigmergic Approach to Acoustic Design
doi https://doi.org/10.52842/conf.acadia.2011.396
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 396-403
summary This paper explores the application of agent-based modeling techniques to the domain of acoustics design. Concepts derived from Stigmergy, which is a class of mechanisms that mediate interactions between social organisms, are applied to a custom implementation of a raytracing based acoustics simulator. Rays are given the agency of changing the geometric and material properties of the surfaces they come in contact with during the raytracing phase. The acoustic simulation process is an active one, where the modeled room environment is adapted while being evaluated. Given performance criteria as input, the simulation process is applied to an auditorium example. The auditorium is adapted and its eventual emergent design has improved acoustic performance. It is hoped that this work will demonstrate the potential of coupling multi-agent systems with simulation processes in order to create new design tools.
series ACADIA
type work in progress
email
last changed 2022/06/07 07:59

_id acadia11_196
id acadia11_196
authors Lopes, José; Leitão, António
year 2011
title Portable Generative Design for CAD Applications
doi https://doi.org/10.52842/conf.acadia.2011.196
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 196-203
summary Most CAD applications provide programming languages for automation and generative design. However, programs written in these languages are not portable because they execute only in the family of CAD applications for which they were originally written. Consequently, users are locked-in to one family of CAD applications and they cannot reuse programs written for other families. In this paper, we propose a solution to this problem: Rosetta, a programming environment that is compatible with several CAD applications. Rosetta is composed of (1) an abstraction layer that allows portable and transparent access to several different CAD applications; (2) back-ends that translate the abstraction layer into different CAD applications; (3) front-end programming languages in which users write the generative design programs; and (4) an intermediate programming language that encompasses the language constructs essential for geometric modeling and that is used as a compilation target for the front-ends.Rosetta allows users to explore different front-ends and back-ends, in order to find a combination that is most suitable for the problem at hand. As a result, users have access to different programming languages, namely, visual and textual, which can be used interchangeably to write generative design programs, without breaking portability. Furthermore, Rosetta ensures that a single program can be used to create identical geometric models in different CAD applications. This approach promotes the development of programs that are portable across the most used CAD applications, thus facilitating the dissemination of the programs and of the underlying ideas.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2011_125
id ecaade2011_125
authors Sarhan, Ahmed; Rutherford, Peter
year 2011
title Environmental Design eTutor: Utilizing Games Technology for Environmental Design Education
doi https://doi.org/10.52842/conf.ecaade.2011.699
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.699-708
summary The design paradigm has shifted from addressing geometric masses and social spaces to integrate a whole new set of variables and criteria evolving from the environmental aspect of the design. Architectural design is confronting a mounting challenge with the ever-growing complexity of design concepts and the increasing pressure to incorporate aspects of energy preservation and sustainability. Such challenge is clearly noted and sensed within the pedagogical realm. There are many calls to bridge the gap through assisting design students to assimilate environmental analysis data in their design and decision making process. This paper presents a framework for a proposed method and relating tools aiming to utilize games technology with multi-agent systems and data mining techniques to assist design students and untrained professionals in comprehending various aspects of environmental design, with guidelines to incorporate these aspects in their design iteration process.
wos WOS:000335665500081
keywords Environmental Design Education; Building Performance Simulation; Games Technology; Multi-Agent Systems; Data Mining
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_034
id ecaade2011_034
authors Schirmer, Patrick; Kawagishi, Noboru
year 2011
title Using shape grammars as a rule based approach in urban planning - a report on practice
doi https://doi.org/10.52842/conf.ecaade.2011.116
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.116-124
summary With the development of user friendly software, using procedural shape grammars has become productive for urban planning projects. Little about the experience of their use by architects and urban planning agencies has been reported yet. This paper will thus discuss the experience gained with the use of shape grammars in the projects of KCAP. We will show how the different scales of urban planning and urban design can be handled and how design concepts can be integrated into the procedural “pipeline” using the software “CityEngine”. We will also present an approach of “typological testing” that allows to test various design concepts for their possible developments. This work is the base for current research at ETH, integrating geometric aspects into behavioural simulation processes of urban simulation.
wos WOS:000335665500013
keywords Shape grammars; Urban planning; Urban Simulation; Urban Typologies
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_023
id ecaade2011_023
authors Schneider, Sven; König, Reinhard; Pohle, Robert
year 2011
title Who cares about right angles?: Overcoming barriers in creating rectangularity in layout structures
doi https://doi.org/10.52842/conf.ecaade.2011.361
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.361-367
summary This paper examines methods for the generation of structures that exhibit rectangularity. Rectangularity in architectural and urban structures can be traced to various reasons, including facilitating the design process, since the use of rectangular geometry limits both the space of possible solutions and the operations necessary to search the solution space. With the help of computer-based methods it becomes possible to explore huge solution spaces, however most existing methods stick to traditional concepts for the generation of geometric structures, such as the use of predefined elements (rectangles). These approaches do not take into account geometric irregularities which the structure to be generated may be subject to. In this paper we present a method that makes it possible to create a nearly rectangular structure within a freely definable boundary.
wos WOS:000335665500041
keywords Rectangularity; Structures; Design Tool; Design Process; Evolutionary Optimization
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_043
id ecaade2011_043
authors Vettoretti, Ana Claudia; Resende, Pablo; Gonzaga, Mário Guidoux; Turkienicz, Benamy
year 2011
title Anthropometric and behavior data applied to a generative design system: A study of public benches
doi https://doi.org/10.52842/conf.ecaade.2011.469
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.469-476
summary This paper discusses ergonomic human body support in regard to people reading and talking on public benches. An applied experiment has been developed where design parameters are structured and associated to anthropometric dimensions relating to observed ergonomic postures. These are incorporated to a procedural design strategy using a geometric model with combination rules. The procedure has been tested, allowing a generation of alternative designs to emerge from ergonomic fitness parameters. The experiment helped to formulate a design methodology for optimizing the information during the product design and manufacturing processes.
wos WOS:000335665500054
keywords Bench; urban furniture; generative design; anthropometric data, behavior data
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_155
id ecaade2011_155
authors Vrontissi, Maria; Azariadi, Styliani
year 2011
title Digital tools in the architectural design of a geodesic dome: The case-study of the bearing structure of an artificial sky lighting installation
doi https://doi.org/10.52842/conf.ecaade.2011.511
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.511-520
summary This article discusses the use of digital technology in the design and construction of a geodesic dome built in a student workshop as the bearing structure for an artificial sky lighting installation. Digital tools were used for the whole process from preliminary to detailed design, fabrication and assembly, in order to allow the investigation and precise representation of the geodesic geometry. However, limited possibilities, in combination with the intrinsic nature of the geometry, which allowed segregation of tasks, did not permit a full exploration of the potential of the digital continuum at that time; even though taking advantage of digital technologies, the process maintained some of its linear characteristics. A couple of years after the successful completion of the installation, the project is ‘revisited’ in retrospect, and the design process is ‘reengineered’ considering the design potential of recent advances in digital technology. In this work in progress, an attempt is made to work with an inclusive model that contains geometric, structural, material and manufacturing input and constraints and can inform design, fabrication and assembly processes, allowing for dynamic manipulation and control of parameters at any given time; thus, reconfiguring in real time the design, as well as the related processes.
wos WOS:000335665500059
keywords Digital tools; parametric design; geodesic dome; artificial sky
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id cf2011_p168
id cf2011_p168
authors Ciblac, Thierry
year 2011
title Parametric Design with Standard Elements for Non-Standard Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 119-132.
summary The development of non-standard architecture is often combined with the use of non-standard elements. But for economical or sustainable reasons, the use of standard elements may be particularly useful. The introduction of standard elements adapted to geometries far from parallelepipeds and freely designed raises a specific problem. The aim of this paper is to explore some ways offered by computing tools in order to help architects in the design process of non-standard shapes using standard elements. An approach is proposed for a specific typology of systems composed of constant length elements. The method used herein is based on parametric modeling associated with constraint resolution algorithms. (short abstract because full paper already written)
keywords parametric modeling, non-standard architecture, standardization, form finding
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_44
id acadia11_44
authors Hertz, Garnet
year 2011
title Arduino Microcontrollers and The Queen’s Hamlet: Utilitarian and Hedonized DIY Practices in Contemporary Electronic Culture
doi https://doi.org/10.52842/conf.acadia.2011.044
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 44-47
summary In this paper, I will pull together concepts of utility-driven do-it-yourself (DIY) culture and pleasure-oriented DIY practice to investigate a significant trend in contemporary computing culture, the “maker” movement, typified by an interest in building personalized and handmade electronic devices with sensors, motors and lights, usually controlled by microcontrollers like the Arduino. My argument is that maker culture has been co-opted by consumer hobby culture, but this is not necessarily detrimental because it provides an important outlet for personal exploration, increases an understanding of how electronic media actually works and assists individuals to be actors in a culture that is increasingly complex, technological and digitized.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:50

_id ijac20109103
id ijac20109103
authors Jun Chung, Daniel Hii; Malone-Lee Lai Choo
year 2011
title Computational Fluid Dynamics for Urban Design: The Prospects for Greater Integration
source International Journal of Architectural Computing vol. 9 - no. 1, 33-54
summary Computational Fluid Dynamics (CFD) has always been used in the field of architecture, urban design and urban planning to understand the patterns of wind flow through the built environment. Its analysis is important to evaluate whether the natural ventilation through a site is adequate to mitigate heat and pollutant to achieve better human comfort in dense urban environments. However, given the complex operational requirements, the response to wind flow is not always done early enough to support planning and design. This paper seeks to illustrate how CFD analysis can aid planning and design of urban areas and investigates the workflow requirements, in the hope of making the CFD simulations more accessible to the practices and contribute to design decisions. It also looks at the present technological advancements and future prospects to assess the scenarios where emerging technologies can make CFD simulation more readily available with affordable and even mobile hardware installations.
series journal
last changed 2019/05/24 09:55

_id ijac20119401
id ijac20119401
authors Ko, Kaon; Salvator-John Liotta
year 2011
title Decoding Culture Parametrically: Digital Tea House Case Studies
source International Journal of Architectural Computing vol. 9 - no. 4, 325-338
summary This paper reviews the Digital Tea House, a workshop held at the University of Tokyo with the aim to build three pavilions for hosting tea ceremony.As first attempts on cultivating formal innovations resulting from digital design process applied to construction of tea houses, the works convey that parametric design can be a mechanism through which architects are able to produce new images of a tea house and renew its conceptual meanings, and that it can be a tool to retain architecture convergent with cultural values.The authors analyze issues addressed in the workshop that range from applications of computational design, interpretations of tradition, structural stability, to solutions for quick physical materialization within limited time and budget.This paper clarifies the following: First, that parametric processes are not contradictory to traditional cultural principles; and second, how traditional elements of the tea house were decoded and formally reinterpreted through parametric designs.
series journal
last changed 2019/07/30 10:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_718642 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002