CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 560

_id ijac20109302
id ijac20109302
authors Williams, Nicholas; Hanno Stehling, Fabian Scheurer, Silvan Oesterle, Matthias Kohler, Fabio Gramazio
year 2011
title A Case Study of a Collaborative Digital Workflow in the Design and Production of Formwork for ‘Non-Standard’ Concrete Structures
source International Journal of Architectural Computing vol. 9 - no. 3, 223-240
summary This paper presents an overview of ongoing research from within the Tailorcrete research project into the development of CAD tools for the design and realization of ‘non-standard’ concrete structures. The focus is on concrete formwork, a significant factor affecting cost, logistics and aesthetics. With a process spanning a broad range of expertise, collaboration through an effective digital workflow is vital to the successful execution of such structures. As a concept for this workflow, a working model of a Design System is described and its development discussed. This focuses on three aspects: (1) the identification of key Use-Cases; (2) the definition of Formwork Systems; and (3) the definition of communication between software elements to provide relevant means of collaboration for expert users. An implementation as a package of software prototypes is also briefly presented. This includes a Base Framework, tools targeting Use-Cases and components relating to specific formwork systems.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_159
id ecaade2011_159
authors Sdegno, Alberto
year 2011
title The Masieri Memorial by Frank L. Wright in Venice: Reconstructing an Unbuilt project on the Canal Grande
doi https://doi.org/10.52842/conf.ecaade.2011.960
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.960-966
summary The research that is presented here was developed to understand the impact of a new building in a very delicate context, such as the venetian one. The case study was a very important project for the history of architecture, because it is the only design by Frank L. Wright for an Italian customer. The Masieri Memorial was projected by the author on Canal Grande and near the Rialto bridge. The very detailed drawings and notes helped us to reconstruct in digital form the architecture, to study the representation of it in Venice and to verify the effect with the other ancient venetian palaces, such as Palazzo Balbi. The simulation was taken to the photorealistic perception, applying all the textures and materials as found in the sketches and reserved notes of the architect. The final step was the realization of a video to simulate the perception from a boat and the materialization of a maquette using the Rapid Prototyping techniques, in nylon powder.
wos WOS:000335665500110
keywords Digital reconstruction; simulation; rendering; video animation; Rapid Prototyping
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
doi https://doi.org/10.52842/conf.acadia.2011.316
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
wos WOS:000330320600052
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia11_112
id acadia11_112
authors Klinger, Kevin
year 2011
title Informing Design through Production Formulations
doi https://doi.org/10.52842/conf.acadia.2011.112
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 112-113
summary Over the decade of the aughts, architectural discourse has charted a new course, and in the wake of the digital effect on mainstream architectural thinking, we find ourselves in a great age of exploration. Research in digital fabrication has moved from the general to the specific, in that it aims to focus efforts related to technological impact on particular cases and variable parameters which contribute to even larger ideas, such as manufacturing, the social impact, sustainable practices, etc. Specific work on building components, coupled with a pragmatic rigor about durability, strength, and production have provided concrete examples of work that spin out of these design-through-production investigations. To be certain, each new design-through-production project explores unique territory and contributes to the knowledge map by adding to a matrix of possible applications. Still, we align our work with the age-old discipline of architectural thinking, while privileging “Making, Materials, Performance, Form, and Function.” Indeed, form is informed by performance! The principles that govern the human decision-making, in light of this new kind of digitally generated work have yet to be clearly articulated, but techniques and methods have expanded to create new opportunities for making architecture. In fact, research has tended to be less about framing the new principles for making digital architecture and more about adding specific cases to the knowledge base, as each new project helps to define the collective body.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:51

_id acadia11_98
id acadia11_98
authors Kudless, Andrew
year 2011
title Bodies in Formation: The material evolution of flexible formworks
doi https://doi.org/10.52842/conf.acadia.2011.098
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 98-105
summary Borne from the complex negotiation between liquid mass and tensile constraint, flexible formwork castings are resonant with material energy. Hard as stone, yet visually supple and fluid, the pre-cast architectural assemblies produced using flexible formwork techniques suggest integrative design strategies that acknowledge the intricate associations between form, fabrication, and material behavior. This tripartite synthesis between geometry, making, and performance has emerged as one of the central themes of contemporary architecture and engineering. Borrowing ideas of morphology from biology and physics, 20th century architectural innovators such as Antoni Gaudi and Frei Otto built a legacy of material practice that incorporated methods of making with material and geometric logics. The emergent effects (and affects) produced through these highly integrative practices serve as the basis of much of the research and design at Matsys. Building on the flexible formwork research of Miguel Fisac in the 1970s, the P_Wall series by Matsys explores the use of digital tools in the generation and fabrication of these bodies in formation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
doi https://doi.org/10.52842/conf.acadia.2011.152
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
doi https://doi.org/10.52842/conf.acadia.2011.300
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p112
id cf2011_p112
authors Schlueter, Arno
year 2011
title Integrated Design Process for Prefabricated Façade Modules with Embedded Distributed Service Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 419-434.
summary The awareness of the environmental impact of buildings concerning their CO2 emissions, their energy and resource consumption has raised the challenges on building design, construction and operation. Building service systems are among the main contributors to building related emissions. Their consideration already in design is therefore of growing importance. Distributed service systems represent a new paradigm towards the supply of a building with energy and matter. Being small, efficient and networked, they can be distributed within the building fabric to allow an efficiently supply of the building space. Their employment, however, affects the spatial layout, construction and resulting building performance. In order to capture the resulting complex dependencies, a strategy to integrate such systems into the architectural design process is necessary. In this work a design process is proposed, that integrates distributed service systems into building design, dissolving the classical divide between architectural design and service systems layout. Digital modelling and computational methods are employed to create and analyse design solutions, visualize performance criteria and provide the relevant data for the intended digital fabrication process. The process is exemplified using a joint university-industry case study project focusing on parametric façade modules, developed in a seamless digital process from concept to fabrication.
keywords integrated design, design process, performance assessment, digital fabrication, distributed building service systems
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_034
id caadria2011_034
authors Wakita, Akira; Akito Nakano and Michihiko Ueno
year 2011
title SMAAD Surface: A tangible interface for smart material aided architectural design
doi https://doi.org/10.52842/conf.caadria.2011.355
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 355-364
summary In this paper, we present Smart Material Aided Architectural Design (SMAAD), the design technique to realize intuitive shape modelling with synchronizing a tangible user interface (TUI) and a 3D CAD system. To realize SMAAD, we first implemented SMAAD Surface, the TUI that imitates the free-form surface. The TUI is a fabric device, in which flex sensors and actuators (shape memory alloys) are embedded. As a designer changes the textile shape using his/her hands, its surface data will be sent to the CAD system through the sensor and a free-form surface can be created in the PC. The operation in the opposite direction is also possible, in which the CAD surface data is sent to the fabric device to dynamically change its shape. SMAAD releases architectural designers from complex GUI operations and visual programming and enables digital model creation through natural manual operations for physical models.
keywords Smart materials; tangible user interfaces; surface modelling; algorithmic design
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2012_333
id sigradi2012_333
authors da Silva, Isabelle Maria Mensato; Viz, Simone Helena Tanoue
year 2012
title Ensino de Arquitetura e Urbanismo com auxilio de ferramentas digitais [Teaching Architecture and Urbanism with help of digital tools]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 522-526
summary This article aims to discuss the importance of freehand drawings in the architectural projective process in the context of the digital age, through the use of tablets. It is intended to identify how these drawings, using tablets, keep the perception and the personal dash of each one. This research aims not only to review and update the drawing´s disciplines in the architecture courses - its practices and procedures - but also to discuss the actual role of representation - analogical or digital - and its interaction with others disciplines. The first research, done in 2011, indicated possibilities of interface with CAD, Revit and Sketch-up. The second part, in course in this year, 2012, is trying to experiment the use of tablets in three others disciplines: History of Architecture and Urbanism I, Landscaping and Project I, in the Instituto de Arquitetura e Urbanismo da USP, São Carlos, Brasil.
keywords freehand drawing, graphic, tablet, digital media
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2013_104
id ecaade2013_104
authors Figueiredo, Bruno; Duarte, José Pinto and Krüger, Mário
year 2013
title Albertian Grammatical Transformations
doi https://doi.org/10.52842/conf.ecaade.2013.2.687
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 687-696
summary This paper presents a research on the use of shape grammars as an analytical tool in the history of architecture. It evolves within a broader project called Digital Alberti, whose goal is to determine the influence of De re aedificatoria treatise on Portuguese Renaissance architecture, making use of a computational framework (Krüger et al., 2011).Previous work was concerned with the development of a shape grammar for generating sacred buildings according to the rules textually described in the treatise. This work describes the transformation of the treatise grammar into another grammar that can also account for the generation of Alberti’s built work.
wos WOS:000340643600071
keywords Shape grammars; parametric modelling; generative design; Alberti; classical architecture.
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2013_043
id caadria2013_043
authors Freitas, Márcia Regina de and Regina Coeli Ruschel
year 2013
title What is Happening to Virtual and Augmented Reality Applied to Architecture?
doi https://doi.org/10.52842/conf.caadria.2013.407
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 407-416
summary This paper presents the results of a comprehensive survey of activities on research and development of Virtual and Augmented Reality applied to architecture. 200 papers were reviewed, taken from annual conferences of the Association for Computer Aided Design In Architecture (ACADIA) and its sibling organizations in Europe (ECAADE and CAAD Futures), Asia (CAADRIA), the Middle East (ASCAAD) and South America (SIGRADI). The papers were grouped in research areas (design method, architectural theory and history, performance evaluation, human interaction, representation and process & management), emphasis (education, application, collaboration, visualization, practice and theory) and technology development stage (specification, development, application demonstration and evaluation). The period of study comprises 11 years, from 2000 to 2011. Findings for each category are described and key publications and authors are identified.  
wos WOS:000351496100040
keywords Virtual reality, Augmented reality, Study of activity 
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2020_147
id ecaade2020_147
authors Matìjovská, Dana and Achten, Henri
year 2020
title It’s Art Baby - The Science of Comparing and Scoring Artistic Endeavour at Schools of Higher Education
doi https://doi.org/10.52842/conf.ecaade.2020.2.527
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 527-534
summary Scientific output has well-established methods for comparing and scoring the quality and quantity of the work. For artistic output this matter is not settled at all and a subject of much debate. We present a method which has been developed in Czech republic since 2011. This method is used to compare and score the artistic output of all schools of arts in the country (for example, music, performative arts, architecture, literature, sculpture, painting). The system presented in this paper is based on the Saaty-method (also known as Analytic Hierarchy Process). After almost eight years of development and use, the system has proven as a valuable asset to assess in an objective way output between many different forms of artistic works. In 2016 the system was incorporated in the Higher Education Act. In the paper we present a brief history of the development and the principles of AHP applied in the system. In particular, we will focus on the findings in architecture derived from the system. Finally, we will discuss possible implications for architectural education in general.
keywords Register of Artistic Performance; SAATY method
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia11_40
id acadia11_40
authors Weinstock, Michael
year 2011
title The Architecture of Flows: Integrated Infrastructures and the ‘Metasystem’ of Urban Metabolism
doi https://doi.org/10.52842/conf.acadia.2011.040
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 40-43
summary The traditional approach to urban design studies has been based on what can be described as a generalised anatomical model, e.g., functional zoning coupled to metaphors such as green areas serving as the ‘lungs’ of cities. Despite the frequent use of biological metaphors, urban design has generally proceeded from an understanding of cities as static arrays of buildings and infrastructures that exist in, but are distinct from, stable environments. But this approach does not reflect the dynamic systems of cities throughout history, nor their close coupling to the dynamics of their local environment, climate and ecology, and now the global dynamics of culture and economy. The limitations of this approach, in which cities are treated as discrete artefacts, rather than nodes interconnected by multiple networks, are compounded by the legal and regulatory boundary of the city usually being defined as an older core, so that cities are regarded as something quite separate from their surrounding territory. All cities have administrative boundaries, but cities are very rarely either physically or energetically contained within those administrative boundaries. In the past, cities gathered most of the energy and materials they needed from their immediate local territory, and trade linked systems of cities across whole regions. The growth and vitality of many cities are no longer dependent on the spatial relationship with their immediate environs but on the regional and global flows of resources. The flow of materials, information and energy through cities comes from far outside their physical and regulatory (municipal) boundaries. Cities now extend their metabolic systems over very great distances, so that the extended territory of the urban metabolism of a city and its geographical ‘place’ are often completely decoupled.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:58

_id caadria2011_062
id caadria2011_062
authors Zhang, Wei and Yiping Wang
year 2011
title Architectural space information scale: A new way of understanding architectural space
doi https://doi.org/10.52842/conf.caadria.2011.653
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 653-662
summary This paper presents a proposal for digitalizing architectural space. For this aim, the analysis of space properties in terms of an information scale is suggested as a new way of understanding architectural space. Information scale in this paper is a new concept integrating the body scale, behaviour scale and time scale in traditional conceptions of space. Through the process of information transfer, forms, behaviour, history, design, experience, evaluation etc. in architectural space are integrated into a well-arranged and operational approach. BIM plus SIM (Space Information Model) thus constitutes an integral architectural information model.
keywords Space information property; space information scale; Space Information Model
series CAADRIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_295960 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002