CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 527

_id ecaade2011_112
id ecaade2011_112
authors Wurzer, Gabriel; Alaçam, Sema; Lorenz, Wolfgang
year 2011
title How to Teach Architects (Computer) Programming: A Case Study
doi https://doi.org/10.52842/conf.ecaade.2011.051
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.51-56
summary Computer programming in architecture seems to be commonplace throughout the eCAADe Community. Yet, a critical evaluation of a programming course as seen from a student’s side is still missing. During a week-long programming workshop in a fellow university, we have been assessing subjective parameters such as mood, quality of presentation and comprehensibility, comparing these to the actual topics that were covered at this instance. Our results contribute to understanding architecture students in their quest towards algorithmical thinking. We are convinced that the discussion given in this paper will help other teachers to further increase the quality of their lectures. Furthermore, the structure of our approach may serve as basis for further research into recording student behavior during programming courses.
wos WOS:000335665500004
keywords Teaching; Programming; Assessment
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_015
id caadria2011_015
authors Davis, Daniel; Flora Dilys Salim and Jane Burry
year 2011
title Designing responsive architecture: Mediating analogue and digital modelling in the studio
doi https://doi.org/10.52842/conf.caadria.2011.155
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 155-164
summary Prototyping digitally responsive architecture requires that architects know how to program and design electronics. Normally they don’t. The challenge for teachers is to teach these skills whilst maintaining a focus on the design potentials of responsive architecture. One method is to teach students to use Input-Output-Process (IPO) diagrams and parametric modelling as pathways into the logic of responsive architecture. The paper discusses the work of students taught this way during a semester long elective. Our analysis shows that IPO diagrams lead to reactive architecture, which matches the current technical limitations of responsive architecture. We argue that mediating analogue and digital models is an essential aspect to successful responsive architecture.
keywords Responsive architecture; physical interaction; education; parametric design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2011_012
id caadria2011_012
authors Biao, Li and Li Rong
year 2011
title Searching generative methods based on building environments
doi https://doi.org/10.52842/conf.caadria.2011.123
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 123-132
summary Architectural contexts present both resources and restrictions from local spatial environment, such as factors of sunlight, landscape, line of sight, terrain and etc. They play important roles in architectural design. Following the traditional methods, it takes the architects lots of time to analyse the relative relationships. This paper takes terrain and sunlight into consideration to illustrate how to employ generative methods at the early stage of architectural design.
keywords Terrain context; sunlight; multi-agent; genetic algorithm, evolve
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ijac20119403
id ijac20119403
authors Davis,Daniel; Jane Burry and Mark Burry
year 2011
title Understanding visual scripts: Improving collaboration through modular programming
source International Journal of Architectural Computing vol. 9 - no. 4, 361-375
summary Modularisation is a well-known method of reducing code complexity, yet architects are unlikely to modularise their visual scripts. In this paper the impact that modules used in visual scripts have on the architectural design process is investigated with regard to legibility, collaboration, reuse and design modification.Through a series of thinking-aloud interviews, and through the collaborative design and construction of the parametric Dermoid pavilion, modules are found to impact the culture of collaborative design in architecture through relatively minor alterations to how architects organise visual scripts.
series journal
last changed 2019/07/30 10:55

_id caadria2011_057
id caadria2011_057
authors Fraser, Matthew and Michael Donn
year 2011
title Thinking through digital simulation tasks in architectural education
doi https://doi.org/10.52842/conf.caadria.2011.599
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 599-608
summary This study reports the activities of 80 second year architecture students at Victoria University, Wellington, New Zealand for the duration of a single trimester. A central theme in this studio is the framing of day-lighting problems into a quantifiable investigation and then addressing these through the use of digital modelling and simulation tools. This study offers an insight to undergraduate architecture students’ negotiation of digital design spaces and asks the question of how the knowledge of skill-based specialist tasks are extensible to core design studio.The mass education within a University environment of such specialist skill based techniques allows for an insight to the negotiation of quantitative and qualitative design criteria. The issue of learning skill based tasks at university level is a pertinent topic of study as the critique of such techniques is implicit to the holistic education of Architects but the level of this critique can vary greatly. This question also highlights the challenges faced to improving the design education approaches to computational thinking and applications.
keywords Design analysis; daylight simulation; education
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_040
id caadria2011_040
authors Hamadah, Qutaibah
year 2011
title The polymorphic diagram: On mediating spatial thinking in architecture design
doi https://doi.org/10.52842/conf.caadria.2011.419
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 419-428
summary This paper describes the polymorphic diagram, a conceptual building information modeling environment conceived to mediate spatial thinking during the conceptual design phase. In particular, the discussion is focused on how enabling multiple forms of representations can possibly support and improve architects’ cognitive capacity to reason about space configuration.
keywords Space configuration; conceptual design; diagrams
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_053
id caadria2011_053
authors Jalalian, Arash; Stephan K. Chalup and Michael J. Ostwald
year 2011
title Agent-agent interaction as a component of agent-environment interaction in the modelling and analysis of pedestrian visual behaviour
doi https://doi.org/10.52842/conf.caadria.2011.555
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 555-564
summary This multidisciplinary project involves concepts from architectural design, statistical learning, machine vision, and human ecology. The focus is on analysing how pedestrians’ dynamic behaviour in space is influenced by the environmental design of different architectural scenarios. This paper presents a multi-agent pedestrian simulation and analysis system that supports agent-to-agent interactions, different spatial desires, and interpersonal distance. The system simulates and analyses pedestrian spatial behaviour with combined focus on movement trajectories, walking speed, and the visual gaze vector. The analysis component relies on learning a statistical model characterising normal/abnormal behaviour, based on sample observations of regular pedestrian movements without/with the impacts of significant visual attractions in the environment. Using the example of Wheeler Place in Newcastle (Australia) our pilot experiments demonstrate how pedestrian behaviour characteristics can depend on selected features in the visual environment. The presented system will allow architects and urban designers to obtain better assessment of planned urban spaces and streetscape characteristics and their impacts on pedestrian behaviour.
keywords Agent interaction; pedestrian behaviour; analysis
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p075
id cf2011_p075
authors Janssen, Patrick; Chen Kian Wee
year 2011
title Visual Dataflow Modelling: A Comparison of Three Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 801-816.
summary Visual programming languages enable users to create computer programs by manipulating graphical elements rather than by entering text. The difference between textual languages and visual languages is that most textual languages use a procedural programming model, while most visual languages use a dataflow programming model. When visual programming is applied to design, it results in a new modelling approach that we refer to 'visual dataflow modelling' (VDM). Recently, VDM has becoming increasingly popular within the design community, as it can accelerate the iterative design process, thereby allowing larger numbers of design possibilities to be explored. Furthermore, it is now also becoming an important tool in performance-based design approaches, since it may potentially enable the closing of the loop between design development and design evaluation. A number of CAD systems now provide VDM interfaces, allowing designers to define form generating procedures without having to resort to scripting or programming. However, these environments have certain weaknesses that limit their usability. This paper will analyse these weaknesses by comparing and contrasting three VDM environments: McNeel Grasshopper, Bentley Generative Components, and Sidefx Houdini. The paper will focus on five key areas: * Conditional logic allow rules to be applied to geometric entities that control how they behave. Such rules will typically be defined as if-then-else conditions, where an action will be executed if a particular condition is true. A more advanced version of this is the while loop, where the action within the loop will be repeatedly executed while a certain condition remains true. * Local coordinate systems allow geometric entities to be manipulated relative to some convenient local point of reference. These systems may be either two-dimensional or three-dimensional, using either Cartesian, cylindrical, or spherical systems. Techniques for mapping geometric entities from one coordinate system to another also need to be considered. * Duplication includes three types: simple duplication, endogenous duplication, and exogenous duplication. Simple duplication consists of copying some geometric entity a certain number of times, producing identical copies of the original. Endogenous duplication consist of copying some geometric entity by applying a set of transformations that are defined as part of the duplication process. Lastly, exogenous duplication consists of copying some geometric entity by applying a set of transformations that are defined by some other external geometry. * Part-whole relationships allow geometric entities to be grouped in various ways, based on the fundamental set-theoretic concept that entities can be members of sets, and sets can be members of other sets. Ways of aggregating data into both hierarchical and non-hierarchical structures, and ways of filtering data based on these structures need to be considered. * Spatial queries include relationships between geometric entities such as touching, crossing, overlapping, or containing. More advanced spatial queries include various distance based queries and various sorting queries (e.g. sorting all entities based on position) and filtering queries (e.g. finding all entities with a certain distance from a point). For each of these five areas, a simple benchmarking test case has been developed. For example, for conditional logic, the test case consists of a simple room with a single window with a condition: the window should always be in the longest north-facing wall. If the room is rotated or its dimensions changed, then the window must re-evaluate itself and possibly change position to a different wall. For each benchmarking test-case, visual programs are implemented in each of the three VDM environments. The visual programs are then compared and contrasted, focusing on two areas. First, the type of constructs used in each of these environments are compared and contrasted. Second, the cognitive complexity of the visual programming task in each of these environments are compared and contrasted.
keywords visual, dataflow, programming, parametric, modelling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_362
id acadia11_362
authors Mathew, Anijo
year 2011
title Interactive Placemaking: Three Critical Enquiries into Urban Interactions in Place
doi https://doi.org/10.52842/conf.acadia.2011.362
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 362-371
summary Project for Public Spaces (Project for Public Spaces) defines placemaking as a process that fosters the creation of vital public destinations: the kind of places where people feel a strong stake in their communities and a commitment to making things better. This paper uses 3 design implementations to argue that architects and designers must reconstruct these ideas of placemaking in the evolving social, cultural, economic and technological context of our time. The projects are used as critical enquiries to explore how designers can integrate current social-economic and cultural thinking from design, business, and computing and show how evolving interactive connected technologies can lead to new ways of constructing located and connected place.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia11_72
id acadia11_72
authors Menges, Achim
year 2011
title Integrative Design Computation: Integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions
doi https://doi.org/10.52842/conf.acadia.2011.072
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 72-81
summary In contrast to most other building materials, wood is a naturally grown biological tissue. Today, the organic nature of wood is recognized as a major advantage. Wood is one of the very few naturally renewable, fully recyclable, extremely energy efficient and CO2-positive construction materials. On the other hand, compared to industrially produced, isotropic materials, the inherent heterogeneity and differentiated material makeup of wood’s anatomic structure is still considered problematic by architects and engineers alike. This is due to the fact that, even today, most design tools employed in architecture are still incapable of integrating and thus instrumentalizing the material properties and related complex behavior of wood. The research presented in this paper focuses on the development of a computational design approach that is based on the integration of material properties and characteristics. Understanding wood as a natural composite system of cellulose fibers embedded in a lignin and hemicelluloses matrix characterized by relatively high strain at failure, that is high load-bearing capacity with relatively low stiffness, the particular focus of this paper is the investigation of how the bending behavior of wood can become a generative design driver in such computational processes. In combination with the additional integration of the possibilities and constraints of robotic manufacturing processes, this enables the design and production of truly material-specific and highly performative wood architecture. The paper will provide a detailed explanation of such an integrative approach to design computation and the related methods and techniques. This is complemented by the description of three specific research projects, which were conducted as part of the overall research and all resulted in full scale prototype structures. The research projects demonstrate different approaches to the computational design integration of material behavior and robotic manufacturing constraints. Based on a solution space defined by the material itself, this enables novel ways of computationally deriving both material-specific gestalt and performative capacity of one of the oldest construction materials we have.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia11_252
id acadia11_252
authors Schubert, Gerhard; Artinger, Eva; Petzold, Frank; Klinker, Gudrun
year 2011
title Tangible Tools for Architectural Design: Seamless Integration into the Architectural Workflow
doi https://doi.org/10.52842/conf.acadia.2011.252
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 252-259
summary The starting point for the “CDP” (Collaborative Design Platform) interdisciplinary teaching and research project is to examine how digital tools can be used to support architects in the early design stages. The CDP – Collaborative Design Platform – represents an interface between the familiar, tried and tested ways in which architects work with digital tools that support the design process. The focus of the project concept is to create a working environment that fits seamlessly into the design process. The aim is to close the gap between analogue ways of working and digital tools. Using a prototypical setup, we examine the use of the computer as a tool for supporting the design process.
series ACADIA
type work in progress
email
last changed 2022/06/07 07:57

_id sigradi2011_311
id sigradi2011_311
authors Simão de Lima, Camilo; Massara Rocha, Bruno
year 2011
title Hibridação no processo criativo: interfaces gestuais utilizando programação e computação física [Hybridism in creative processes: gesture interfaces using programming and physical computing]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 151-154
summary The research presented here explores the association between programming and physical computing and aims to demonstrate how important this hybridism is for architecture. The main objective is to exemplify the viability of self creating hybrid human-computer gestural interfaces using programming and physical computing applied to creative processes in architecture. The experimental prototype developed for this research offers applicability in the areas of spatial analysis methods, scenario visualization and simulation, volumetric conception, using more intuitive based input tools and more integrated gesture commitment.
series SIGRADI
email
last changed 2016/03/10 10:00

_id acadia11_000
id acadia11_000
authors Taron, Joshua M; Parlac, Vera; Kolarevic, Branko; Johnson, Jason S (eds.)
year 2011
title ACADIA 11: Integration through Computation
doi https://doi.org/10.52842/conf.acadia.2011
source Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, 413 p.
summary With the world turning its eyes to a new tomorrow and America reshaping and greening its infrastructure, The School of The Art Institute of Chicago, Department of Architecture, Interior Architecture and Designed Objects, is proud to host "reForm()" -- A conference that explores how architects, engineers, artists and designers are using new HARDWARE, SOFTWARE and MIDDLEWARE technologies to transform the ways in which buildings and spaces perform, act and operate. Set in the heart of Chicago, a city with a legacy of innovation in design and building technology, ACADIA09 provides a unique forum for the examination of emerging research and design in today's building and design professions.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_536993 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002