CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 458

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p120
id cf2011_p120
authors Veliz, Alejandro; Medjdoub Benachir, Kocaturk Tuba
year 2011
title Bridging the Gap in Constraint-Based Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 133-148.
summary Mass customization is one of the most promising computational developments in the AEC industry. Despite recent advances in the production of research-based knowledge, the professional practices lack of a consistent and permanent technology adoption scheme and remain as a very resilient and fragmented industry. This work is a part of an ongoing research project developing guidelines for improving both physical and virtual modeling processes within an architectural design context. Here, we present a customizable model of a space layout explorer. The implementation of the user-driven solution-finding process is based on constraint technology embedded in Autodesk’s Revit® 2011 macros tools, commonly used in the professional practice. The aim of this work is to demonstrate a practical use of a small constraint-based system on software of widespread use. Even though there is still a lack of building information, the model has already several applications in the definition a floor plan layout and in the comparison of several instances of the design solution in the 3D user view. User-driven modifications are not made directly through the 3D model, but through different explicit text tags that describe each parameter on 2D views -although a real time 3D visualization of the model is also available-. The main findings are discussed as guidelines for further research on the end-user involvement on a ‘creative mass customization’ scheme. Also, the implementation of visual aids such as text tags during the customization process can bridge some technical obstacles for the development of interfaces for constraint-based mass customization systems. Before the final discussion, some limitations on the use of this model are described.
keywords collaborative design, mass customization, reality gap
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_091
id sigradi2011_091
authors Rodriguez Barros, Diana
year 2011
title Diseño de Productos y Modelado 3D Hiperrealistico. Un caso de enseñanza y práctica proyectual en entornos digitales [Product design and hyper realistic 3D model. A case of teaching and design practice in digital environments]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 411-414
summary We present a teaching experience carried out during the second quarter of 2010 in the Industrial Informatics 2 course of FAUD UNMdP Industrial Design Product oriented career, about three-dimensional and communication module. We tackle this practice, developed in the digital workshop environment, from the perspective of Design Thinking through an approach to the multidimensional implicit in the design process. The experience walked through the initial product selection and recognition of coding guidelines for design; redesign, 3D modeling and product prototyping; and result communicating. We consider have obtained multiple and original results to tackle, complement and resolve the design in virtual environments from the individual interests of students.
series SIGRADI
email
last changed 2016/03/10 09:59

_id cf2011_p095
id cf2011_p095
authors Shin, Dongyoun; Muller Arisona Stefan, Schmitt Gerhard
year 2011
title Crowdsourcing Urban Simulation Platform Using Mobile Devices and Social Networking Media Technologies
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 233-246.
summary Introduction and Research Questions The research area of urban simulation methods has grown notably in recent decades. Most of the research topics that concern urban simulation have concentrated on defining the complexities of urban environments with certain rules and algorithms. However, cities are getting more complex and changes to them are being made at greater speed. Therefore, current urban simulation modeling approaches based on rules and protocols are still struggling to reduce the gap between the virtual simulation environment and the real cities, since the behavior of citizens is frequently unpredictable and continuously adapting. In this context, research is necessary to develop more fundamental simulation methods that can handle these complexities and changes, leading to new design decision support systems. Therefore, this research was motivated with the following questions: What is the origin of the complexities and transformations of the urban environment? How can we approach the origin to deal with the urban complexities and transformations? To answer these questions, we hypothesize that the diverse human intentions are the origin of the issues that result from all of the complexities and changes of the cities. General Objectives As a result, we propose a participatory simulation environment that brings human intention into the urban simulator: a crowdsourcing [1] simulation platform that is operated by the people‚Äôs participation. To achieve this crowdsourcing urban sustainability simulation environment, we must address the following research issues: categorization of urban sustainability indicators and technologies, inducing mass participations, and an implementation of social network services. Furthermore, we aim at using mobile computing devices, such as smart phones, as a terminal to the simulation environment. Fundamental Goals Our goal is to enable people to share urban information at any time and to compare each other‚Äôs contributions through the crowdsourcing urban simulation platform. The information will be returned to the citizens to support their sustainability-aware life. The simulation platform also gives a chance not only to compare each other‚Äôs levels of sustainability, but also to give self-satisfaction through an altruistic contribution for a sustainable future. Thus, people shall utilize the simulator in order to predict their individual or cities‚Äô future sustainability. Meanwhile, the user data will be collected and delivered to the central server in order to analyze the urban sustainability. Consequently, we can measure the urban sustainability based on a real human interaction, and compare individuals as well as cities. The whole process of this research is presented as a new paradigm of an urban simulator that reflects the urban complexities and the inconstant human mind changes. Specific Objectives of This Paper This paper will represent strategies of the crowdsourcing urban simulation which can make a paradigm shift of urban simulation and shall define the customized sustainable indicators for the initial steps of this research. It shows how as system for can communicate with the public using the current technologies: high performance mobile media, social network services and wide-area geospatial information systems. Furthermore, for the first step of this research, the paper defines the urban sustainability indicators, and their categorization is generalized and translated into simpler ways to support the citizen‚ intuitive understanding.
keywords Crowdsourcing, Urban sustainability, Multi-agent based simulation, Social network services
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_025
id acadiaregional2011_025
authors Bum Kim, Jong ; Mark J. Clayton, Wei Yan
year 2011
title Parametric Form-Based Codes: Incorporation of land-use regulations into Building Information Models
doi https://doi.org/10.52842/conf.acadia.2011.x.l7j
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This project describes investigations into whether parametric modeling using a Building Information Modeling (BIM) platform can represent the provisions and constraints of Form-Based Codes (FBCs). BIM software environments couple 3D modeling with parametric form generation and rich semantics. Further capabilities of an Application Programming Interface that supports Object-Oriented Programming (OOP) results in a very powerful environment for expressing planning and design concepts. While these capabilities were developed under the intention of supporting building design, we hypothesize that they can support planning rules and regulations that are found in FBCs. If our approach is successful, future planning departments will be able to provide architects and urban designers with a FBC that is implemented as a BIM software toolkit, better integrating the planning phase of a project into the building design phase.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_292
id acadia11_292
authors Davis, Adam; Tsigkari, Martha; Iseki, Takehiko; Aish, Francis
year 2011
title Just Passing Through: Integration in Computational Environmental Design
doi https://doi.org/10.52842/conf.acadia.2011.292
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 292-299
summary This paper proposes Buckminster Fuller’s concept of pattern integrity as a context for understanding computational techniques in environmentally responsive design. We argue that successful integration in this context requires a continuous design medium that allows for heterogeneous, mutable techniques and models. This model of integration is demonstrated by reference to a current project for a large canopy structure in Singapore with specific focus on issues of environmental mediation, object-oriented programming for CAD environments, and functional programming techniques within parametric modeling systems. We discuss the applicability of these novel integrative approaches to wider problems in computational design.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id sigradi2011_193
id sigradi2011_193
authors Garagnani, Simone; Mingucci, Roberto
year 2011
title A.I.M. Informative Archives for architectural renovation
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 94-97
summary The information technology applied to the architectural surveys makes the environment documentation pos- sible through multimedia data, which can be processed using a "Multimedia Informative Archive" (A.I.M.), designed for Institutions interested in cultural heritage preservation. An A.I.M. system can manage analytical information embedded into digital databases, referencing a visual exploration path to several technical data, documenting the context in which a monument, or an historical building, is placed. The framework can be ported to mobile devices in order to allow a wide number of data gathering stations, connected to the same central archive, making easier browsing and storing architectural information.
keywords Digital 3D modeling; architectural information technology; virtual heritage documentation; multimedial building database; immersive data modeling
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadiaregional2011_028
id acadiaregional2011_028
authors Haliburton, James; Mark Clayton, Ozan Ozener, Francisco Farias, WoonSeong Jeong
year 2011
title Parametric Modeling and BIM: Innovative Design Education for Integrated Building Practices
doi https://doi.org/10.52842/conf.acadia.2011.x.c0v
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Parametric modeling and Building Information Modeling (BIM) present opportunities to radically change the architectural design process, which has similarly radical implications upon design education. These processes and technologies are demanding a broader knowledge base and deeper skill set. The same technologies and processes create opportunities to meet and surpass the traditional architectural knowledge base that forms the basis for design education. Outlined in this paper are the results of three studies that employed BIM and parametric modeling within the context of simulated professional project delivery and compares the results using the new process to the NAAB Student Performance Criteria. From these studies, it appears that the alternative design method that employs BIM and parametric modeling is more rigorous and effective than the traditional method of instructing students with respect to the Student Performance Criteria in Realm B: Integrated Building Practices.
series ACADIA
last changed 2022/06/07 07:49

_id acadiaregional2011_024
id acadiaregional2011_024
authors Hillukka, Daniel
year 2011
title Interior Climate Optimization by Volumetric Adjustment
doi https://doi.org/10.52842/conf.acadia.2011.x.j1c
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This research focuses primarily on the functionality of software, specifically Rhinoceros (McNeel & Assoc.) and a few associated PlugIns (Grasshopper, Rhino Assembly), to create and control a model of a building to study the environmental effects of modulation of space. Has technology been completely utilized in addressing comfort maintenance within a dwelling space? For example, animals have a similarities based upon their surface to volume relationship, yet they are able to adjust the ratios based on a reaction to their environmental circumstances. For example, when cold, they are able to “fluff” their fur in order to minimize their surface area in comparison to an increasing “interior” volume. Historically, abilities to influence temperature change within a space have been relegated to passive air exchange systems and more recently completely active air exchange means of control. Technological advances have raised significant questions towards methods and means for this control. Through use of 3D models and simulations, the topic of climate maintenance in spatial conditions was addressed using environmental controls. Thus modulation of the interior climate as well as the space could simultaneously occur to create a radically different space of habitation. The preparation and writing of this abstract addressed various areas of the SPC requirements, which become apparent during the digestion of the paper.
keywords Rhinoceros, Grasshopper, Rhino-Assembly, volume, operable architecture, parametric components, climate optimization, dynamic constructs
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p011
id cf2011_p011
authors Verdonck, Evelien; Lieve Weytjens, Verbeeck Griet, Froyen Hubert
year 2011
title Design Support Tools in Practice. The Architects' Perspective
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 769-784.
summary In recent years, a large number of design support tools (DSTs) have been developed to address the ever increasing complexity and fragmentation of the architectural design process. Despite the omnipresence and the wide variety of DSTs available to architects today, literature reveals that there is still a mismatch between existing tools and design practice. Further examination of this discrepancy might reveal possible strategies for the improvement of tools. Therefore, this study investigates the Flemish architectural practice directly through a large-scale survey including 629 architects (nearly 10% of the population). The survey was based on a practice-oriented conceptual framework, which was developed as a theoretical background for this study. First the nature of the design process was explored through extensive literature review. In addition to this, a study of tools and possible classifications was carried out. Although numerous studies are available that provide a possible classification, most focus on specific design aspects, for instance sustainability or user-centered design. However, there is no general outline of tools available that would be adequate for the purpose of this research. The DSTs included in this study range from sketches and checklists to 3D CAD and simulation software, in other words any instrument intended to support one or more aspects of the design process. The findings from both literature studies were synthesized in the conceptual framework. This framework presents the design process as a linear process, consisting of the conceptual design phase, the preliminary design phase, the building permission phase, and the construction phase. Six categories of tools were defined, according to the roles they play in the design process, namely knowledge-based, presentation, evaluation/analysis, structuring, modeling, and communication. A tool can belong to one or more categories. The mapping of these roles on the design process resulted in the final framework, which was then used as a base for the questionnaire. The survey aimed at gaining insight into the different DSTs and their corresponding roles, as well as the design phases in which they are used or most needed by Flemish architects in architectural practice. In addition to this, the survey contained questions about the influence of tools on design decision-making, and the specific characteristics and qualities the designers prefer for design support tools. A final part of the survey asked about general background information, such as the respondents’ age, size of architectural firm and types of projects usually undertaken. The results of the survey reveal that there are distinctly different needs for each of the roles defined, as well as a specific frequency of use within each design phase. Furthermore, the most popular tools often encompass multiple roles. Additionally, clear expectations for future tools are defined. Finally, the data collected show researchers and tool developers what kind of support designers need in the different stages of the design process, and may help them to develop DSTs accordingly, to maximize their usability and eventually contribute to decrease the gap between tools and practice.
keywords design tools, architectural design process, survey
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p033
id cf2011_p033
authors Dorta, Tomas; Kalay Yehuda, Lesage Annemarie, Perez Edgar
year 2011
title Comparing Immersion in Remote and Local Collaborative Ideation Through Sketches: a Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 25-40.
summary Sketches are used in design to support ideation, communication, and collaboration because of their intuitiveness, abstraction, ambiguity and inaccuracy. Design collaboration using freehand sketches is possible through whiteboard software on the Internet. Designers can co-design and share design referents through these tools while adding gestures and expressions using web cams. Freehand sketching using whiteboard software retains the same proportion and scale problems as traditional sketching on paper, but adds digital behaviour (pen tablet display, undo, etc.) and the ability to share sketches in real time with a remote design team. Still, designers are not immersed in their representations. Moreover, such representations can include errors because designers work without reference to real-life perspective views. We developed a system, called the Hybrid Ideation Space (HIS) that allows designers to be immersed in their freehand sketches. The system supports local and remote collaboration, allowing designers to be literally inside their life sized, real time representations, while sharing them with remote collaborators who use another HIS. This paper presents a case study comparing the HIS to conventional whiteboard software (Vyew™) in a context of local and remote design collaboration on two landscape architecture projects. Two multidisciplinary teams worked on the first steps of two ad-hoc projects. The goal was to make an initial observation of the impact of immersion and see if it delivers benefits to collaborative ideation. Two methodological tools supported the study: the Design Flow for the experience that includes the NASA TLX to measure the workload, and the Collaborative Ideation Loop (CI-Loop) for design collaboration.
keywords Collaboration, ideation, immersion, sketches, whiteboard
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_132
id acadia11_132
authors MacDowell, Parke; Tomova, Diana
year 2011
title Robotic Rod-bending: Digital Drawing in Physical Space
doi https://doi.org/10.52842/conf.acadia.2011.132
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 132-137
summary This paper details preliminary project-based design research that emphasizes the development of tools and processes in tandem with the development of ideas and forms. Amid increasingly mechanized fabrication processes, this project injects the human as code-writer and tool-builder, asserting authorship within the modes of production themselves. The initial output from this foray, wavePavilion is an architectural installation generated by computer algorithms and built using custom digital fabrication technology. Completed in June 2010, the project is located on the grounds of the University of Michigan Taubman College of Architecture and Urban Planning. wavePavilion has a footprint of 20x30 feet and stands 14 feet tall, containing over a kilometer of 1/4-inch diameter steel rod.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id sigradi2011_234
id sigradi2011_234
authors Nome, Carlos; Clayton, Mark J.; Aguiar, Marcela
year 2011
title BIM: configurações e desdobramentos para implementação prática e ensino de arquitetura [BIM: configurations and unfoldings for implementation in practice and architectural education]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 507-511
summary This paper reports on the initial findings of a long term case study. It focuses on the BIM implementation efforts for Brazilian public firms that are responsible for the design, construction and management of buildings, infrastructure and urban spaces. It was postulated that BIM implementation could bring to Brazilian public institutions benefits similar to the ones achieved in the US, yet at a different cost structure. Research follows a mixed methods approach using focus groups and quasi experiments. Results describe obstacles encountered, benefits realized, and process changes expected that result from Brazilian socio-cultural context applied to public institutions.
series SIGRADI
email
last changed 2016/03/10 09:56

_id eaea2009_piga
id eaea2009_piga
authors Piga, Barbara E.A.
year 2011
title The Urban Simulation and Projects Evaluation Laboratory at the Politecnico di Milano: An Educational and Research Facility
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 115-120
summary At the beginning of 2007 an Italian Urban Simulation Laboratory was founded at the Politecnico di Milano. The laboratory, coordinated by prof. Fausto Curti, has been developed thanks to the one year presence of the visiting professor Peter Bosselmann, director of the Environmental Simulation Laboratory at the University of California at Berkeley. The laboratory has an interdisciplinary approach and a threefold mission: experiment, using the laboratory setting to study urban projects at different scales; communicate, aiding public communication by making urban projects understandable to everyone; integrate and innovate, working on different kind of simulations techniques in an integrated way. In its initial experience the laboratory is primarily a didactic and research facility. Students can join the work and participate actively to the research. Until now about 40 students have worked with us, more than a half were foreign students from all over the world. The majority of the students did an internship of about 150 (three-year degree) or 300 (master degree) hours and some of them have continued working after this period developing a thesis. At the moment the case study, used as a pilot research, is about the Porta Nuova project at the Garibaldi- Repubblica area in Milan. The 300.000 mq of the total area and its well served central position make this place strategic for Milan. In this area the adopted urban transformation plan is creating a new business center that affects redevelopment projects, new infrastructures, and a park. The overall project will overhanging the surroundings city center with some of the highest buildings of its skyline. The importance of the site and the dimension of the project make this case significant to test the use of simulation for supporting evaluations about morphological aspects, comfort conditions, visual impacts, and other aspects that directly influence the quality of the new urban spaces. We are now applying different simulation methodologies in order to better understand the peculiar usefulness of each kind as a tool to support evaluation. As any kind has its own limits we work with different typologies at the same time. We are working with 1:500 scale physical model of a 1 km square of the area and different kind of static and dynamic simulations. We developed, with an external office, a micro-car to move a micro-camera in the maquette. We use this equipment to better explain the project implications to the students by producing subjective shot videos or showing a walk in real-time. To reproduce in a better way some relevant walks through the transformed site we have also produced some videos made of a superimposition of the real existing context and the virtual projects. To do this we used a rendered video of the project superimposed to the filmed promenade of the today condition, previously recorded using steadycam. A lot of static simulations has been employed to better understand the new city configuration from some representative points of view, as for example the roof of the Duomo cathedral. We are now developing some other kinds of analysis such as shadows impact; this is done by using a 1:1000 scale maquette in the Heliodon, but also with some digital tools. In the next future a work with the wind tunnel will help to understand some other comfort implications of the project at the micro-urban scale. The multilayer approach is the main aim of the laboratory and is an important tool to clarify the multidimensional project impacts to the students. In this way the laboratory can be a learning tool, it can stimulate the project process and support decision-making while improving the knowledge about the correct use of simulations for evaluating the cumulative implications of the proposed urban processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id ecaade2011_090
id ecaade2011_090
authors Verovsek, Spela; Juvancic, Matevz; Zupancic, Tadeja
year 2011
title Interpretation Model of Urban Space Coherence
doi https://doi.org/10.52842/conf.ecaade.2011.886
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.886-894
summary The paper presents our efforts to establish a model for urban space interpretation (IMUSC – Interpretation Model of Urban Spatial Coherence), intended as a pragmatic instrument for recognizing elements and phenomena that affect actual use of urban spaces. The initial premise proposes the mechanism for traceable linkage between the basic, mostly visible elements and features in the urban space, and three qualities concerning actual use: (a) access to the space, (b) movement within and through the space and (c) permitted/ tolerated and stimulated sojourning of the users in the space. The model aims to assist with bridging the communicational gap between expert and lay public occurring in the formal or informal process of spatial co-deciding, by increasing comprehension of spatial complexities and hence developing common priorities concerning spatial values.
wos WOS:000335665500102
keywords Spatial qualities; interpretation model; public participation; urban design
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 22HOMELOGIN (you are user _anon_177704 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002