CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 25

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_052
id caadria2011_052
authors Al-Kazzaz, Dhuha A. and Alan Bridges
year 2011
title Assessing innovation in hybrid designs using shape grammars
doi https://doi.org/10.52842/conf.caadria.2011.545
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 545-554
summary Al-kazzaz et al (2010) described hybrid adaption technique to generate innovative designs from heterogeneous precedents using shape grammars. An evaluation of the degree of innovation in the hybrid designs gave feedback to grammar users before and after applying a rule. Innovation was assessed using variables derived from the internal structure of the grammar such as: the number of antecedents in the corpus having the same rule; the number of rules in a subclass rule set having the same geometry; etc. However, the validity of the innovation assessment was unclear and the use of the feedback measures was not demonstrated. Accordingly, this study aims to verify the credibility of the innovation measures and to identify the independent variables that a user can control to achieve a significant impact on each innovation measure as a dependent variable.
keywords Shape grammars; hybrid design; innovation assessment
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2011_158
id sigradi2011_158
authors Davis, Felecia
year 2011
title Telephoning Textiles: Networked Soft Architectures
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 231-234
summary A textile receives a telephone call from a mobile telephone. This wearable textile is an innovative example of inter-layering and weaving together materials to make a composite soft material that can receive calls from mobile telephones. If a textile can be designed as a wearable shirt, as demonstrated in this paper, then many of these same fabrication techniques can be integrated into soft architecture at a scale large enough to shelter people. This project demonstrates networked soft materials; the project develops the concept of soft architecture and presents a new framework for building integrated architectural systems.
keywords Computational Textile; Soft Architecture; E-Textiles; Mobile Communications; Networked Wearables
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia11_70
id acadia11_70
authors Gutierrez, Maria-Paz
year 2011
title Innovative Puzzles
doi https://doi.org/10.52842/conf.acadia.2011.070
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 70-71
summary Matter and information; information and matter. A puzzle unveiled little by little. Hardly surprising since every atom, molecule, and basic particle in the universe registers bits of information. All interactions between these components, inert and alive, owe their existence to matter’s intrinsic ability to process information. Such aptitude explains how complex systems can arise from fundamentally simple organizational laws. In fact, the world’s almost infinite material combinations, viable through such few basic elements, are one of the most visible expressions of these capabilities. Triggered by the developments in quantum physics across the twentieth century, our understanding of material processes radically shifted our impressions of the world. For decades our scales of perception and manipulation have continued to expand into almost unfathomable boundaries. Yet, the study of the interdependencies between matter and information is still fundamentally part of the sciences and engineering. Only just recently did architecture venture into this inherently intricate field. The subsequent set of papers here presented posit fundamental interrogations of potential interdependencies between matter and information. Without fear to confront the obstacles of delving into a largely unexplored field of architecture, these researchers forge new frontiers of interrelating computational parameters to multi-physics in the complex settings of architectural scale. Unlike other epistemologies, architecture cannot be reduced to a single scale of exploration. We can neither restrict scalar boundaries (i.e., nano to micro), nor reduce morphologies to simplify the processing of multiple physics without compromising the design problem. By default, it is more difficult to conceptually and numerically articulate the abstract and numerical criteria of complex geometries and material variables.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:50

_id ecaade2011_123
id ecaade2011_123
authors Gül, Leman Figen
year 2011
title What we learnt from design teaching in collaborative virtual environments
doi https://doi.org/10.52842/conf.ecaade.2011.203
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.203-212
summary Collaborative virtual environments clearly have potentials to enable innovative and effective education, involving debate, simulation, role play discussion and brain storming and project based group work etc. Integration of the collaborative virtual environments into the design curricula offers significant potentials for design schools. In this paper, based on our previous teaching in collaborative virtual environments, the student’s perceptions and evaluations of the courses, we discuss the pedagogy of design teaching in collaborative virtual environments, considering what skills the new generation of designers should have in terms of collaboration, communication and design.
wos WOS:000335665500023
keywords Collaborative virtual environments; collaborative design; design studio; communication modes; design representation
series eCAADe
email
last changed 2022/05/01 23:21

_id acadiaregional2011_028
id acadiaregional2011_028
authors Haliburton, James; Mark Clayton, Ozan Ozener, Francisco Farias, WoonSeong Jeong
year 2011
title Parametric Modeling and BIM: Innovative Design Education for Integrated Building Practices
doi https://doi.org/10.52842/conf.acadia.2011.x.c0v
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Parametric modeling and Building Information Modeling (BIM) present opportunities to radically change the architectural design process, which has similarly radical implications upon design education. These processes and technologies are demanding a broader knowledge base and deeper skill set. The same technologies and processes create opportunities to meet and surpass the traditional architectural knowledge base that forms the basis for design education. Outlined in this paper are the results of three studies that employed BIM and parametric modeling within the context of simulated professional project delivery and compares the results using the new process to the NAAB Student Performance Criteria. From these studies, it appears that the alternative design method that employs BIM and parametric modeling is more rigorous and effective than the traditional method of instructing students with respect to the Student Performance Criteria in Realm B: Integrated Building Practices.
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2011_146
id ecaade2011_146
authors Hunter, Moira; Chase, Scott; Kligerman, Bradley; Zupancic, Tadeja
year 2011
title ARCHI21: Architectural and Design based Education and Practice through Content & Language Integrated Learning using Immersive Virtual Environments for 21st Century Skills
doi https://doi.org/10.52842/conf.ecaade.2011.725
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.725-733
summary This paper offers insights into innovative practice being undertaken in higher architectural and design education, where both language and content teaching and learning are integrated as interwoven parts with joint curricular roles. Using Expansive Learning Theory as an analytical framework to examine potential tensions and contradictions arising from the educational approach of Content and Language Integrated Learning, reference is made to three very recent pilot studies of the EU funded project, ARCHI21. The experiential learning in these studies adopted a blended approach, where classical face-to-face learning-teaching scenarios were supported by immersive 3D virtual environments together with social networking media and Web 2.0 tools. This paper uses these pilot studies to speculate on aspects of fragility and offers reflection on future project activity.
wos WOS:000335665500084
keywords Architecture; education; Content and Language Integrated Learning; 3D immersive environments; Second Life
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_278
id acadia11_278
authors Kobayashi, Yoshihiro
year 2011
title Irregular Vertex Editing and Pattern Design on Mesh
doi https://doi.org/10.52842/conf.acadia.2011.278
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 278-283
summary This paper introduces an innovative computational design tool used to edit architectural geometry by addressing the problem of irregular vertices. An irregular vertex is a special kind of vertex which is connected with fewer or greater less or more edges than regular vertices on a mesh object. Irregular vertices create problems with further surface rationalization, as well as structural analysis and constructability of the surface. Geometry created using other tools can also be remeshed upon import. Using the developed tool, the user is able to identify irregular vertices, interactively change the type, and then move or remove these irregular vertices. Additionally, a computational tool to make various design patterns on the mesh after the topology has been edited is also developed. The workflow is illustrated step by step in the pipeline. The advantages and disadvantages of editing mesh topology on architectural geometry design including the limitations are discussed at the end.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia11_30
id acadia11_30
authors Kolarevic, Branko
year 2011
title Towards Computationally Aided Integrative Design
doi https://doi.org/10.52842/conf.acadia.2011.030
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 30-33
summary Concepts such as integrated practice and integrated design are increasingly seen in architecture as promising paradigms for a much needed (and long overdue) change in the building industry. What is usually meant by these terms is a multidisciplinary, collaborative approach to design in which various participants from the building industry – architects, engineers, contractors, and fabricators – participate jointly from the earliest stages of design, fluidly crossing the conventional disciplinary and professional boundaries to deliver an innovative or simply better and less costly product at the end.
keywords integrative design
series ACADIA
type introduction
email
last changed 2022/06/07 07:51

_id c04a
id c04a
authors Krause D, Derix C and Gamlesaeter A
year 2011
title The Virtual Building Simulator: a Post-Parametric Spatial Planning Environment
source Proceedings of Construction Applications of Virtual Reality, Weimar, 2011
summary The described research of Fraunhofer IAO and AEDAS CDR examines the potential of post-parametric computational design together with immersive methods like Virtual Reality. The industrial approach of frontloading identifies the early design stage as crucial for all subsequent processes and the overall sustainability of future building projects. There VR together with innovative planning simulation methods allow to manage building models as complex systems for long-term planning reliability from construction to building operation. The Virtual Building Simulator represents a prototype of a design platform where the designer-user can immersive himself via VR into the interactive spatial formation process. The process synthesizes parametric constraints with design intent and algorithmic behavioural logics.
keywords Knowledge-based Processes, Algorithmic Design, Spatial Planning, VRfx
series other
type normal paper
email
more http://aedasresearch.com/files/publications/CONVR_2011_Paper_Virtual_Building_Simulator_finish.pdf
last changed 2012/09/20 17:19

_id eaea2015_t1_paper05
id eaea2015_t1_paper05
authors Lobo de Carvalho, Jose Maria; Heitor, Teresa
year 2015
title The Adaptive Reuse of the Arco do Cego ancient Car-Barn Structure in Lisbon
source ENVISIONING ARCHITECTURE: IMAGE, PERCEPTION AND COMMUNICATION OF HERITAGE [ISBN 978-83-7283-681-6],Lodz University of Technology, 23-26 September 2015, pp.61-70
summary This paper presents the example of the reconversion of an important tram station from the origins of electricity in Portugal that was still in use until the late 1990’s but became redundant since then. Its significant urban presence and the importance of preserving the memory of the old trams that were still in use some years ago in Lisbon, led to an innovative solution, combining public value and heritage protection. In 2011, the Lisbon City Council agreed to give the building and its site for university use, namely to be transformed into a student’s facility, as a study, leisure, recreational and cultural space of the IST, open 24h a day. This new university building, located just one block away from the traditional IST compound, was called IST Learning Center and extended the notion of campus outside its walls and into the city’s urban fabric.
keywords reconversion; university; tram
series EAEA
email
last changed 2016/04/22 11:52

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2011_009
id ecaade2011_009
authors Sampaio, Alcínia Z.; Gomes, Ana R.; Gomes, Augusto M.
year 2011
title Maintenance and Inspection of Façades of Building Supported on Virtual Reality Technology
doi https://doi.org/10.52842/conf.ecaade.2011.332
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.332-338
summary A Virtual Reality model was created in order to help in the maintenance of exterior closures of walls in a building. It allows the visual and interactive transmission of information related to the physical behavior of the elements, defined as a function of the time variable. To this end, the basic knowledge of material most often used in façades, anomaly surveillance, techniques of rehabilitation, and inspection planning were studied. This information was included in a data base that supports the periodic inspection needed in a program of preventive maintenance. The results are obtained interactively and visualized in the virtual environment itself. This work brings an innovative contribution to the field of maintenance supported by emergent technology.
wos WOS:000335665500038
keywords Virtual Reality; Maintenance; Interaction human-machine
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p104
id cf2011_p104
authors Sherif, Ahmed; El Zafarany Abbas
year 2011
title Designing the Window to Fit a Shading Device, A Reversed Method for Optimizing Energy Efficient Fenestration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 383-399.
summary Solar radiation passing through a window contributes significantly to cooling loads and energy consumption, especially in hot climates. Most CAAD tools handling energy efficient design help designers to define the optimal shading device to protect a window of a certain shape, usually a rectangle, but some parts of the rectangular window (such as lower corners) are typically difficult to protect. Usually the whole shading device becomes bigger to shade these corners, which over-shades the rest of the window, increasing artificial lighting and heating loads. It also increases the complexity, visual impact and cost of the shading device. Changing the shape of the window by cutting these corners may reduce the size of the shading device considerably, which opens way to a different –or even a reversed- approach: “Designing the window to fit a shading device instead of designing the shading device to fit the window!” This approach has several potential applications. The building form itself sometimes works implicitly as a shading device. For example, if the building plan shape is a U or L shape, some parts of the walls become shaded, the windows can be placed in these shaded parts, and the window shape can be designed to fit the shadow pattern caused by the building form, changes in the building profile gives similar chances to design windows that fit the shadow pattern. Conceptually, this approach makes energy efficiency a form giving attribute, helping to create innovative facades, while giving an energy efficient configuration for both window and its shading device. CAAD tools can help the designer adopt such an innovative approach, by proposing the window shape that suits an arbitrary shading device created by the designer or a building mass. This paper examines the validity of the approach and introduces the approach required for developing a software module that can be integrated with other CAAD tools such as the Ecotect software. This would enable the designers to use this approach. The method handles the complexity of time-dependent solar geometry and radiation intensity, the geometry of both the window and shading device, and the designers set of objectives, enabling the designer to define the required configuration of window and shading device.
keywords Energy Efficiency, Low Energy Architecture, Windows, Shading Devices, Algorithm, Oprimization
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2011_047
id ecaade2011_047
authors Wiertelarz, Kathrin M.
year 2011
title An exploration in teaching architectural design for construction and fabrication
doi https://doi.org/10.52842/conf.ecaade.2011.035
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.35-42
summary The intent of this paper is to examine experimental design methods in the field of architecture and their implementation in academic settings. The projects emerged during design research studio at the institute of digital design techniques at the university of Kassel and collaborative workshops with several institutes. The starting point of the teaching concept was a divergence from the usual methods and ways of thinking, allowing for new, innovative solutions to emergence during the design process. The main point was a development of novel spatial modules in coherence with material and structural considerations. The question of materiality becomes a crucial consideration. The characteristics of different materials used for models development did not just influenced geometrical possibilities but also intensify, explore and organize spatial and structural qualities of the projects.
wos WOS:000335665500002
keywords Research; Education and Practise; Generative and Parametric Digital Design Aids, Tools for Construction and Production
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_378
id sigradi2011_378
authors Moretti Meirelles, Célia Regina; Dinis, Henrique; Collet e Silva, Tiago Azzi; Dias, Alan
year 2011
title A aplicação da modelagem em elementos finitos na concepção das estruturas em madeira e sua aplicação em projetos de habitação em madeira [The application of finite element modeling in the design of timber structures and their application in housing projects]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 520-523
summary The search for sustainable buildings is one of the most important phenomena of this century. Wood is a renewable material light, presents a grand synthesis of carbon recovery, its construction process is considered dry construction, it is composed of prefabricated parts for easy assembly.The research examines the application and digital models as tools in the design of timber structures and demonstrate the potential of digital modeling processes in particular the application of the tools in the structure, serving as support for the project in several phases, it allows the model analysis as a whole, showing stresses and strains.
keywords Housing; timber; finite element
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia11_300
id acadia11_300
authors Ruffo Calderon, Emmanuel; Schimek, Heimo; Wiltsche, Albert
year 2011
title Seeking Performative Beauty
doi https://doi.org/10.52842/conf.acadia.2011.300
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 300-307
summary With digital design and fabrication becoming ever more common in architectural design, the computational geometry topic of discretizing freeform surfaces into flat panels has become a common challenge. At the present, most approaches to the issue of preserving a 2D-tessellation on a freeform surface are focused on optimizing the shape of the structure by approximating geometric “equally-sized” flat patterns. In doing so, these strategies treat the approximation of the desired shape as the primary goal, leaving aside the aesthetical aspect of the paneling, which can be seen as having an ornamental quality. In contrast to these common strategies, the project presented in this paper pursues a more holistic approach that tries to integrate aesthetical as well as structural issues by using more complex as well as more performative patterns for the discretization. In the present paper, we present algorithmic strategies that were designed to integrate from the aesthetics of an exposed timber structure, through analysis of structural loading feedbacks to a detailed level of the physical joint system, as part of the fundamental early design decisions. The consequence of the overall negotiations relies fully on their physical integration through computational design. The present paper discusses both the algorithmic techniques and the joint systems through a series of case studies. At the end of the paper we provide an overview to upcoming tasks including the production of a major structure.
keywords digital architecture; mathematics in architecture; higher-dimensional objects in architecture; design computation and mathematics
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_872131 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002