CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 130

_id acadia11_52
id acadia11_52
authors Iwamoto, Lisa; Scott, Craig
year 2011
title Material Computation: Voussoir cloud
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 52-55
doi https://doi.org/10.52842/conf.acadia.2011.052
summary In contrast to such structurally pure models, the power of computation has opened possibilities for at once muddying and synthesizing geometry, structure and material performance. Where the earlier twentieth century experiments employed a more or less uniform tectonic based on symmetrical structural diagrams, contemporary analysis and design techniques can efficiently adapt a material system to address variable, localized, and non-symmetrical loading conditions. This has resulted in projects characterized by non-optimized structural forms that register the impacts of geometry on material behavior with a deviated tectonic system.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:50

_id ecaade2011_099
id ecaade2011_099
authors Ahlquist, Sean; Menges, Achim
year 2011
title Methodological Approach for the Integration of Material Information and Performance in the Design Computation for Tension-Active Architectural Systems
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.799-808
doi https://doi.org/10.52842/conf.ecaade.2011.799
wos WOS:000335665500092
summary As computational design processes have moved from representation to simulation, the focus has shifted towards advanced integration of performance as a form defining measure. Performance, though, is often assessed purely on the level of geometry and stratified between hierarchically independent layers. When looking at tension-active membrane systems, performance is integrated across multiple levels and with only the membrane material itself, defining the structural, spatial and atmospheric qualities. The research described in this paper investigates the integrative nature of this type of lightweight structure and proposes methodologies for generating highly articulated and differentiated systems. As material is a critical component, the research focuses on a system-based approach which places priority on the inclusion of material research and parameterization into a behavior-based computational process.
keywords Material behavior; material computation; system; gestalt; tension-active system
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
doi https://doi.org/10.52842/conf.acadia.2011.082
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
doi https://doi.org/10.52842/conf.acadia.2011.138
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
doi https://doi.org/10.52842/conf.acadia.2011.186
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id 745e
id 745e
authors Derix C, Kimpian J, Mason J and Karanouh A
year 2011
title Feedback Architecture
source In Terri Peters (ed), Experimental Green Strategies: Ecological Design Research: Architectural Design (AD), Wiley and Sons, Nov-Dec 2011
summary Sustainable design and ecological building are the most significant global challenges for the design profession. To meet new building regulations and national targets for carbon emissions, all future buildings will be judged on their ‘green’ merits. For architects to maintain a competitive edge in a global market, innovation is now key; the design of new processes, technologies and materials that combat carbon emissions and improve the sustainable performance of buildings are paramount. Contemporary practices have responded by setting up multi- disciplinary internal research and development teams, with offices such as Foster + Partners, HOK and Aedas setting the bar for ground-breaking research and development. The aim of internal groups is often to adapt and create new technologies and materials and to borrow ways of working from other disciplines, to focus on innovation rather than incrementally increasing performance or efficiency. This title offers insights into how a wide range of established and emerging practices are rising to meet these challenges. In pursuit of integrated sustainability and low-energy building, material and formal innovation and new tools and technologies, it illustrates that the future of architecture is evolving in an exchange of ideas across disciplines. Incorporating the creation of new knowledge about ecological building within the profession, it also identifies the emergence of a collective will to seek out new routes that build in harmony with the environment.
keywords sustainability, morphology, performance, design computation
series journal paper
type normal paper
email
more http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047068979X.html
last changed 2012/09/20 17:07

_id acadia11_272
id acadia11_272
authors Dimcic, Milos; Knippers, Jan
year 2011
title Free-form Grid Shell Design Based on Genetic Algorithms
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 272-277
doi https://doi.org/10.52842/conf.acadia.2011.272
summary In the 21st century, as free-form design grows in popularity, grid shells are becoming a universal structural solution, enabling the conflation of structure and skin (façade) into one single element (Kolarevic 2003). This paper presents some of the results of a comprehensive research project focused on the automated design and optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It shows that by combining design and FEM software in an iterative, Genetic Algorithms-based optimization process, stress and deformation in grid shell structures can be significantly reduced, material can be saved and stability enhanced.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
doi https://doi.org/10.52842/conf.acadia.2011.318
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
doi https://doi.org/10.52842/conf.acadia.2011.316
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id acadia11_90
id acadia11_90
authors Fure, Adam
year 2011
title Digital Materiallurgy: On the productive force of deep codes and vital matter
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 90-97
doi https://doi.org/10.52842/conf.acadia.2011.090
summary This paper expands the discourse surrounding digital forms of making by scrutinizing the role of materials within computation, ultimately proposing a speculative working model that charts new territory. The growing importance of materials within technological research makes this an appropriate time to consider the nuance of their role within it. Currently, material innovation is happening along two central tracks: the customized cutting, sculpting, and forming of conventional materials with Computer Numerically Controlled (CNC) fabrication equipment and the development of new materials through innovations in material science. Both tracks rely on a limited set of material protocols which enable process-based control and eliminate the intrusion of any unpredictable material variable. Although efficient, such an approach limits architecture’s ability to procure novel material engagements. A few designers are developing an alternative model where computational codes are coupled with eccentric materials to produce unusual results. Digital materiallurgy, as I have called it, is part technique and part attitude; it relies on intentionally ceding limited design control to unpredictable matter—thus capitalizing on matter’s innate ability to produce unexpected formal and material complexity. Digital materiallurgy identifies the intersection of computation and eccentric materiality as a departure point for architectural innovation. By purposefully inserting material heterogeneity and inconsistency into computational means and methods, this work pries apart the apparently seamless relationship between digital design and physical production. By blurring the distinction between physical material and digital form, this work offers an integrated aesthetic experience, one that fetishizes neither the virtual nor the vintage but fuses both into a richer, wilder present.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia11_70
id acadia11_70
authors Gutierrez, Maria-Paz
year 2011
title Innovative Puzzles
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 70-71
doi https://doi.org/10.52842/conf.acadia.2011.070
summary Matter and information; information and matter. A puzzle unveiled little by little. Hardly surprising since every atom, molecule, and basic particle in the universe registers bits of information. All interactions between these components, inert and alive, owe their existence to matter’s intrinsic ability to process information. Such aptitude explains how complex systems can arise from fundamentally simple organizational laws. In fact, the world’s almost infinite material combinations, viable through such few basic elements, are one of the most visible expressions of these capabilities. Triggered by the developments in quantum physics across the twentieth century, our understanding of material processes radically shifted our impressions of the world. For decades our scales of perception and manipulation have continued to expand into almost unfathomable boundaries. Yet, the study of the interdependencies between matter and information is still fundamentally part of the sciences and engineering. Only just recently did architecture venture into this inherently intricate field. The subsequent set of papers here presented posit fundamental interrogations of potential interdependencies between matter and information. Without fear to confront the obstacles of delving into a largely unexplored field of architecture, these researchers forge new frontiers of interrelating computational parameters to multi-physics in the complex settings of architectural scale. Unlike other epistemologies, architecture cannot be reduced to a single scale of exploration. We can neither restrict scalar boundaries (i.e., nano to micro), nor reduce morphologies to simplify the processing of multiple physics without compromising the design problem. By default, it is more difficult to conceptually and numerically articulate the abstract and numerical criteria of complex geometries and material variables.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:50

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_334
id acadia11_334
authors Khoo, Chin Koi; Burry, Jane; Burry, Mark
year 2011
title Soft Responsive Kinetic System: An Elastic Transformable Architectural Skin for Climatic and Visual Control
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 334-341
doi https://doi.org/10.52842/conf.acadia.2011.334
summary Most designers of dynamic building skins that reconfigure themselves in changing conditions have utilised mechanical systems. However, when designing for dynamic responsiveness, these systems often involve intricate and high-tech mechanistic joints, actuators and control. This research investigates the possibility of the ‘soft’ form-changing material systems to minimise the use of ‘hard’ mechanical components for kinetic responsive architectural skins. The research goal is to develop a prototype system that can be used to retrofit an existing building with an application of a ‘second skin’ that performs well in various climate conditions and is visually compelling. This approach is tested by the prototype, namely “Curtain”. It serves two fundamental purposes: Comfort and Cosmetic, to improve the existing interior and exterior spatial conditions. As an early proposition, the significance of this research offers a practical method for realising a ‘soft’ transformable architectural skin that synthesises passive cooling, manipulates sunlight and is set as an active shading device. Parametric design is used to explore and simulate these climatic and visual design constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia11_98
id acadia11_98
authors Kudless, Andrew
year 2011
title Bodies in Formation: The material evolution of flexible formworks
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 98-105
doi https://doi.org/10.52842/conf.acadia.2011.098
summary Borne from the complex negotiation between liquid mass and tensile constraint, flexible formwork castings are resonant with material energy. Hard as stone, yet visually supple and fluid, the pre-cast architectural assemblies produced using flexible formwork techniques suggest integrative design strategies that acknowledge the intricate associations between form, fabrication, and material behavior. This tripartite synthesis between geometry, making, and performance has emerged as one of the central themes of contemporary architecture and engineering. Borrowing ideas of morphology from biology and physics, 20th century architectural innovators such as Antoni Gaudi and Frei Otto built a legacy of material practice that incorporated methods of making with material and geometric logics. The emergent effects (and affects) produced through these highly integrative practices serve as the basis of much of the research and design at Matsys. Building on the flexible formwork research of Miguel Fisac in the 1970s, the P_Wall series by Matsys explores the use of digital tools in the generation and fabrication of these bodies in formation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia11_396
id acadia11_396
authors Lim, Jason
year 2011
title Let’s Work Together: A Stigmergic Approach to Acoustic Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 396-403
doi https://doi.org/10.52842/conf.acadia.2011.396
summary This paper explores the application of agent-based modeling techniques to the domain of acoustics design. Concepts derived from Stigmergy, which is a class of mechanisms that mediate interactions between social organisms, are applied to a custom implementation of a raytracing based acoustics simulator. Rays are given the agency of changing the geometric and material properties of the surfaces they come in contact with during the raytracing phase. The acoustic simulation process is an active one, where the modeled room environment is adapted while being evaluated. Given performance criteria as input, the simulation process is applied to an auditorium example. The auditorium is adapted and its eventual emergent design has improved acoustic performance. It is hoped that this work will demonstrate the potential of coupling multi-agent systems with simulation processes in order to create new design tools.
series ACADIA
type work in progress
email
last changed 2022/06/07 07:59

_id acadia11_72
id acadia11_72
authors Menges, Achim
year 2011
title Integrative Design Computation: Integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 72-81
doi https://doi.org/10.52842/conf.acadia.2011.072
summary In contrast to most other building materials, wood is a naturally grown biological tissue. Today, the organic nature of wood is recognized as a major advantage. Wood is one of the very few naturally renewable, fully recyclable, extremely energy efficient and CO2-positive construction materials. On the other hand, compared to industrially produced, isotropic materials, the inherent heterogeneity and differentiated material makeup of wood’s anatomic structure is still considered problematic by architects and engineers alike. This is due to the fact that, even today, most design tools employed in architecture are still incapable of integrating and thus instrumentalizing the material properties and related complex behavior of wood. The research presented in this paper focuses on the development of a computational design approach that is based on the integration of material properties and characteristics. Understanding wood as a natural composite system of cellulose fibers embedded in a lignin and hemicelluloses matrix characterized by relatively high strain at failure, that is high load-bearing capacity with relatively low stiffness, the particular focus of this paper is the investigation of how the bending behavior of wood can become a generative design driver in such computational processes. In combination with the additional integration of the possibilities and constraints of robotic manufacturing processes, this enables the design and production of truly material-specific and highly performative wood architecture. The paper will provide a detailed explanation of such an integrative approach to design computation and the related methods and techniques. This is complemented by the description of three specific research projects, which were conducted as part of the overall research and all resulted in full scale prototype structures. The research projects demonstrate different approaches to the computational design integration of material behavior and robotic manufacturing constraints. Based on a solution space defined by the material itself, this enables novel ways of computationally deriving both material-specific gestalt and performative capacity of one of the oldest construction materials we have.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia11_122
id acadia11_122
authors Pigram, David; McGee, Wes
year 2011
title Formation Embedded Design: A methodology for the integration of fabrication constraints into architectural design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 122-131
doi https://doi.org/10.52842/conf.acadia.2011.122
summary This paper presents a methodology for the integration of fabrication constraints within the architectural design process through custom written algorithms for fabrication. The method enables the translation from three-dimensional geometry, or algorithmically produced data, into appropriately formatted machine codes for direct CNC fabrication within a single CAD modeling environment. This process is traditionally one-way with part files translated via dedicated machine programming software (CAM). By integrating the toolpath creation into the design package, with an open framework, the translation from part to machine code can be automated, parametrically driven by the generative algorithms or explicitly modeled by the user. This integrated approach opens the possibility for direct and instantaneous feedback between fabrication constraints and design intent. The potentials of the method are shown by discussing the computational workflow and process integration of a diverse set of fabrication techniques in conjunction with a KUKA 7-Axis Industrial Robot. Two-dimensional knife-cutting, large-scale additive fabrication (foam deposition), robot-mounted hot-wire cutting, and robot-assisted rod-bending are each briefly described. The productive value of this research is that it opens the possibility of a much stronger network of feedback relations between formational design processes and material and fabrication concerns.
keywords robotic fabrication; multi-axis; file-to-factory, open-source fabrication, parametric modeling, computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
doi https://doi.org/10.52842/conf.acadia.2011.152
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id acadia11_20
id acadia11_20
authors Taron, Joshua M; Parlac, Vera; Kolarevic, Branko; Johnson, Jason S
year 2011
title Forewords: An Integrative Moment
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 20-21
doi https://doi.org/10.52842/conf.acadia.2011.020
summary The ACADIA 2011 Annual Conference explores integrative trajectories and areas of overlap that have emerged through computation between design, its allied disciplines of engineering and construction, and other fields, such as computer science, material science, mathematics and biology. The conference highlights experimental projects in which methods, processes, and techniques are discovered, appropriated, adapted, and altered from elsewhere, and digitally pursued.
keywords integrative design
series ACADIA
type introduction
email
last changed 2022/06/07 07:57

_id acadia11_326
id acadia11_326
authors Velikov, Kathy; Thün, Geoffrey; O’Malley, Mary; Ripley, Colin
year 2011
title Toward Responsive Atmospheres: Prototype Exploration through Material and Computational Systems
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 326-333
doi https://doi.org/10.52842/conf.acadia.2011.326
summary The Stratus Project is an ongoing body of design research investigating the potential for kinetic, sensing and environment-responsive interior envelope systems. The research emerges from a consideration of our attunement to the soft systems of architecture – light, thermal gradients, air quality and noise – paired with a desire to develop and prototype envelopes that not only perform to affect these atmospheres, but also to promote continual information and material exchange, and eventually dialogue, between occupant and atmosphere. Stratus v1.0 included the construction of a modest prototype using simple open source technologies, aimed to explore the formal, operational and technological possibilities, as well as potential operability and control conflicts, as part of the first phase of thinking around these questions. It deploys a distributed approach to structural, mechanical and communications systems design and delivery, where localized response is prioritized. The project works to reclaim the environmentally performative elements of architecture – in this case, specifically, interior mechanical delivery and interface systems – to within the purview of the discipline, as territories of material, formal, technological and experiential innovation and exploration. This paper will describe both the development of the current prototype as well as future research and investigation trajectories. The Stratus Project begins by situating itself at the crossroads of the disciplinary territories of architecture, technology, environmental control and cybernetics. Through the use of computational technologies and in collaboration with researchers in the fields of computer science, mechanical engineering and materials science, this project aims to advance the development of responsive environmental design and performative building skins.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_8223 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002