CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 556

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
doi https://doi.org/10.52842/conf.caadria.2013.209
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
wos WOS:000351496100021
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_98
id acadia11_98
authors Kudless, Andrew
year 2011
title Bodies in Formation: The material evolution of flexible formworks
doi https://doi.org/10.52842/conf.acadia.2011.098
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 98-105
summary Borne from the complex negotiation between liquid mass and tensile constraint, flexible formwork castings are resonant with material energy. Hard as stone, yet visually supple and fluid, the pre-cast architectural assemblies produced using flexible formwork techniques suggest integrative design strategies that acknowledge the intricate associations between form, fabrication, and material behavior. This tripartite synthesis between geometry, making, and performance has emerged as one of the central themes of contemporary architecture and engineering. Borrowing ideas of morphology from biology and physics, 20th century architectural innovators such as Antoni Gaudi and Frei Otto built a legacy of material practice that incorporated methods of making with material and geometric logics. The emergent effects (and affects) produced through these highly integrative practices serve as the basis of much of the research and design at Matsys. Building on the flexible formwork research of Miguel Fisac in the 1970s, the P_Wall series by Matsys explores the use of digital tools in the generation and fabrication of these bodies in formation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2011_045
id ecaade2011_045
authors Noriega, Farid Mokhtar; Barba, Victor Garcia; Merino, Jose Antonio; Zancajo, Jose Julio; Pérez, Teresa Mostaza
year 2011
title ArchiInspection Project: Integrated Non Destructive Testing, A Building Information Model Approach
doi https://doi.org/10.52842/conf.ecaade.2011.383
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.383-392
wos WOS:000335665500044
summary A non destructive testing process is becoming a technical need, thousands of buildings and huge urban areas will have to be adapted to restrictive energy-saving standards and sustainability criteria. Analysis and diagnostics are required on a massive scale. Building Information Modeling seems to be the adequate environment to assemble huge amounts of data. At this moment both hardware and software technologies are performing moderately well separately. The challenge is to connect them and in the long run automate data collection and conversion to a unified model that could be maintained during the programmed building life cycle. The aim of this research is to discuss the challenge of NDT hardware and BIM software systems integration and define the basic steps for the best practices to undertake it in a fast and accurate manner as well as to define the present and future connections to be developed. A 3 phase joint research project is proposed here and basic needs are analysed. Many lessons have been learned from field work, data translation and data incompatibilities with many shortcomings being detected.
keywords BIM; Architectural Non Destructive Testing; Architectural conservation databases; information interoperability
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p152
id cf2011_p152
authors Plume, Jim; Mitchell John
year 2011
title An Urban Information Framework to support Planning, Decision-Making & Urban Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 653-668.
summary This paper reports on a 2-year research project undertaken in collaboration with a state planning authority, a major city municipal council and a government-owned development organisation. The project has involved the design of an urban information model framework with the aim of supporting more informed urban planning by addressing the intersection where an individual building interfaces with its urban context. This adopted approach enables new techniques that better model the city and its processes in a transparent and accessible manner. The primary driver for this project was the challenge provided by the essential incompatibility between legacy GIS (geographic information system) datasets and BIM (building information model) representations of the built form. When dealing with urban scale information, GIS technologies use an overlay mapping metaphor linked to traditional relational database technologies to identify features or regions in the urban landscape and attach attribute data to those in order to permit analysis and informed assessment of the urban form. On the other hand, BIM technologies adopt an object-oriented approach to model the full three-dimensional characteristics of built forms in a way that captures both the geometric and physical attributes of the parts that make up a building, as well as the relationships between those parts and the spaces defined by the building fabric. The latter provides a far richer semantic structure to the data, while the former provides robust tools for a wide range of urban analyses. Both approaches are widely recognised as serving well the needs of their respective domains, but there is a widespread belief that we need to reconcile the two disparate approaches to modelling the real world. This project has sought to address that disjunction between modelling approaches. The UrbanIT project concentrated on two aspects of this issue: the development of a framework for managing information at the precinct and building level through the adoption of an object-oriented database technology that provides a platform for information management; and an exploration of ontology tools and how they can be adopted to facilitate semantic information queries across diverse data sources based on a common urban ontology. This paper is focussed on the first of those two agendas, examining the context of the work, the challenges addressed by the framework and the structure of our solution. A prototype implementation of the framework is illustrated through an urban precinct currently undergoing renewal and redevelopment, finishing with a discussion of future work that comes out of this project. Our approach to the implementation of the urban information model has been to propose extensions to ISO/PAS 16739, the international standard for modelling building information that is commonly known as IFC (Industry Foundation Classes). Our reason for adopting that approach is primarily our deep commitment to the adoption of open standards to facilitate the exchange of information across the built environment professions, but also because IFC is based on a robust object schema that can be used to construct a internet-accessible database able, theoretically, to handle the vast quantity of data needed to model urban-scale information. The database solution comes with well-established protocols for handling data security, integrity, versioning and transaction processing or querying. A central issue addressed through this work is concerned with level of detail. An urban information model permits a very precise and detailed representation of an urban precinct, while many planning analyses rely on simplified object representations. We will show that a key benefit of our approach is the ability to simultaneously maintain multiple representations of objects, making use of the concept of model view definitions to manage diverse analysis needs.
keywords urban information modelling, geographic information systems, city models, interoperability, urban planning, open standards
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_079
id ecaade2011_079
authors Ryu, Han Soo; Lee, Kwon Hyoung; Ryu, Jung Rim; Choo, Seung Yeon
year 2011
title Development of optimized geometry for low energy super tall office with BIM: Decision on ratio of lateral to longitudinal length and orientation in early design stage
doi https://doi.org/10.52842/conf.ecaade.2011.811
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.811-818
wos WOS:000335665500093
summary There are many researches to make low energy demanding building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also design solution can reduce building energy consumption. This study focuses on development of optimized geometry for super tall office building in Seoul, Korea. Specifically, ratio of lateral to longitudinal length and building orientation are main topics of this study because these are the most primitive and preceding factors deciding mass design. To analyze the energy efficiency of masses, energy simulation is necessary at the initial design stages. In this study, BIM and BIM based energy simulation tools are arranged to compare the alternatives.
keywords BIM; energy simulation; ratio of lateral to longitudinal length; orientation; super tall office building
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_125
id ecaade2011_125
authors Sarhan, Ahmed; Rutherford, Peter
year 2011
title Environmental Design eTutor: Utilizing Games Technology for Environmental Design Education
doi https://doi.org/10.52842/conf.ecaade.2011.699
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.699-708
wos WOS:000335665500081
summary The design paradigm has shifted from addressing geometric masses and social spaces to integrate a whole new set of variables and criteria evolving from the environmental aspect of the design. Architectural design is confronting a mounting challenge with the ever-growing complexity of design concepts and the increasing pressure to incorporate aspects of energy preservation and sustainability. Such challenge is clearly noted and sensed within the pedagogical realm. There are many calls to bridge the gap through assisting design students to assimilate environmental analysis data in their design and decision making process. This paper presents a framework for a proposed method and relating tools aiming to utilize games technology with multi-agent systems and data mining techniques to assist design students and untrained professionals in comprehending various aspects of environmental design, with guidelines to incorporate these aspects in their design iteration process.
keywords Environmental Design Education; Building Performance Simulation; Games Technology; Multi-Agent Systems; Data Mining
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p112
id cf2011_p112
authors Schlueter, Arno
year 2011
title Integrated Design Process for Prefabricated Façade Modules with Embedded Distributed Service Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 419-434.
summary The awareness of the environmental impact of buildings concerning their CO2 emissions, their energy and resource consumption has raised the challenges on building design, construction and operation. Building service systems are among the main contributors to building related emissions. Their consideration already in design is therefore of growing importance. Distributed service systems represent a new paradigm towards the supply of a building with energy and matter. Being small, efficient and networked, they can be distributed within the building fabric to allow an efficiently supply of the building space. Their employment, however, affects the spatial layout, construction and resulting building performance. In order to capture the resulting complex dependencies, a strategy to integrate such systems into the architectural design process is necessary. In this work a design process is proposed, that integrates distributed service systems into building design, dissolving the classical divide between architectural design and service systems layout. Digital modelling and computational methods are employed to create and analyse design solutions, visualize performance criteria and provide the relevant data for the intended digital fabrication process. The process is exemplified using a joint university-industry case study project focusing on parametric façade modules, developed in a seamless digital process from concept to fabrication.
keywords integrated design, design process, performance assessment, digital fabrication, distributed building service systems
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_072
id caadria2011_072
authors Gallas, Mohamed-Anis; Didier Bur and Gilles Halin
year 2011
title Daylight and energy in the early phase of architectural design process: A design assistance method using designer’s intents
doi https://doi.org/10.52842/conf.caadria.2011.761
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 761-770
summary The integration of daylighting from the beginning of the design process can help designers to create buildings that respect their environment benefit from the solar gain thus giving an answer to illumination and energy needs (Bodart et al, 2002). This paper proposes a declarative assistance method/tool designed for the early design phase. This method assists the designer in integrating the daylight and its energetic impact from the beginning of the architectural design process by means of intents. The intents are related to the daylight, energy and spatial configuration aspects of the architectural project. The method translates the designer’s intents into potential solutions. They are the first formal representation of the architect’s intents that could be customized and altered during the next architectural design phases.
keywords Daylight; energy; early design phase; design support; intents
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
wos WOS:000330322400039
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadiaregional2011_027
id acadiaregional2011_027
authors Meniru, Kene
year 2011
title Modeling Building Information in a Parametric Environment
doi https://doi.org/10.52842/conf.acadia.2011.x.b9s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary The building design stage starts with an early effort by the architect to create a sketch which embodies the fundamental building knowledge that forms the basis for all later work. This knowledge is mostly lost in current building design practice procedures where the sketch is reduced to individual building components such as walls, floors, etc. By the time the building is constructed, new efforts have to be made to document information about the building necessary to control and maintain it during operation. This paper represents the next step to a Ph.D. study that describes the early building process and important features to support. It presents a sample design session from the study and based on observations from this session, it identifies and describes important digital objects that can be used to capture building knowledge in the sketch.
series ACADIA
last changed 2022/06/07 07:49

_id eaea2009_piga
id eaea2009_piga
authors Piga, Barbara E.A.
year 2011
title The Urban Simulation and Projects Evaluation Laboratory at the Politecnico di Milano: An Educational and Research Facility
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 115-120
summary At the beginning of 2007 an Italian Urban Simulation Laboratory was founded at the Politecnico di Milano. The laboratory, coordinated by prof. Fausto Curti, has been developed thanks to the one year presence of the visiting professor Peter Bosselmann, director of the Environmental Simulation Laboratory at the University of California at Berkeley. The laboratory has an interdisciplinary approach and a threefold mission: experiment, using the laboratory setting to study urban projects at different scales; communicate, aiding public communication by making urban projects understandable to everyone; integrate and innovate, working on different kind of simulations techniques in an integrated way. In its initial experience the laboratory is primarily a didactic and research facility. Students can join the work and participate actively to the research. Until now about 40 students have worked with us, more than a half were foreign students from all over the world. The majority of the students did an internship of about 150 (three-year degree) or 300 (master degree) hours and some of them have continued working after this period developing a thesis. At the moment the case study, used as a pilot research, is about the Porta Nuova project at the Garibaldi- Repubblica area in Milan. The 300.000 mq of the total area and its well served central position make this place strategic for Milan. In this area the adopted urban transformation plan is creating a new business center that affects redevelopment projects, new infrastructures, and a park. The overall project will overhanging the surroundings city center with some of the highest buildings of its skyline. The importance of the site and the dimension of the project make this case significant to test the use of simulation for supporting evaluations about morphological aspects, comfort conditions, visual impacts, and other aspects that directly influence the quality of the new urban spaces. We are now applying different simulation methodologies in order to better understand the peculiar usefulness of each kind as a tool to support evaluation. As any kind has its own limits we work with different typologies at the same time. We are working with 1:500 scale physical model of a 1 km square of the area and different kind of static and dynamic simulations. We developed, with an external office, a micro-car to move a micro-camera in the maquette. We use this equipment to better explain the project implications to the students by producing subjective shot videos or showing a walk in real-time. To reproduce in a better way some relevant walks through the transformed site we have also produced some videos made of a superimposition of the real existing context and the virtual projects. To do this we used a rendered video of the project superimposed to the filmed promenade of the today condition, previously recorded using steadycam. A lot of static simulations has been employed to better understand the new city configuration from some representative points of view, as for example the roof of the Duomo cathedral. We are now developing some other kinds of analysis such as shadows impact; this is done by using a 1:1000 scale maquette in the Heliodon, but also with some digital tools. In the next future a work with the wind tunnel will help to understand some other comfort implications of the project at the micro-urban scale. The multilayer approach is the main aim of the laboratory and is an important tool to clarify the multidimensional project impacts to the students. In this way the laboratory can be a learning tool, it can stimulate the project process and support decision-making while improving the knowledge about the correct use of simulations for evaluating the cumulative implications of the proposed urban processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id fb59
id fb59
authors Schnabel, Marc Aurel; Chen, Rui Irene
year 2011
title Design Interaction via Multi-touch
source Computer Science Cooperative Design, Visualization, and Engineering, CDVE 2011, Y. Luo (Ed.): Lecture Notes in Computer Science, 2011, Volume 6874/2011, 14-21
summary We present a multi-touch-tabletop tool for design-collaborations and -communication tasks employing three-dimensional digitalized models. Our system allows users from various disciplines to communicate and share their ideas by manipulating the reference and their own input simultaneously by simply using intuitive gestures. Haptic and proprioceptive perception of tangible representations are perceived and understood more readily whereby our system provides an increased potential to compensate for the low spatial cognition of its users. Our integration of combining both model-based and participatory approaches with multi-touch tabletop system setups differs considerably from conventional visual representations for collaborative design. Since the multi-touch design interaction allows users to engage intuitively within virtual design environments, it is presenting a next generation of common graphical user interfaces.
keywords Multi-touch, collaboration, interaction, haptic, design
series book
type normal paper
email
more http://www.springerlink.com/content/y4k7w218359g257q/
last changed 2011/10/22 04:59

_id ecaade2011_093
id ecaade2011_093
authors Veliz, Alejandro; Sills, Pablo
year 2011
title Digital design of reconstruction proposals in Chile
doi https://doi.org/10.52842/conf.ecaade.2011.673
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.673-678
wos WOS:000335665500078
summary After the earthquake and tsunami occurred in Chile on February 27th 2010, the Technical University Federico Santa Maria was asked to contribute with reconstruction proposals for the commercial infrastructure destroyed in the town “San Juan Bautista”. Located 600 km (~370 mi) away from the continent, this town is not just the home of several endemic species, but is also located next to a National Protected Area and UNESCO Biosphere Reserve. Within this context, the design problem consisted on the development of a component-based strategy and prefabrication requirements, and to reduce to the minimum the implied logistics and environmental impacts of the new buildings. With a Studio of 23 final year students and the support of the Architecture Firms Association, 11 projects were developed using digital tools such as visual programming and digital fabrication. Finally, technical documentation was produced and delivered to the local and government authorities.
keywords Visual programming; post-disaster reconstruction; prefabrication; constraintbased design; building components
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_425357 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002