CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 553

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_053
id ecaade2011_053
authors Barros, Mário; Duarte, José P.; Chaparro, Bruno
year 2011
title Digital Thonet: An automated system for the generation and analysis of custom-made chairs
doi https://doi.org/10.52842/conf.ecaade.2011.521
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.521-529
summary A system is presented to support the designer in creating custom versions of chairs within a predefined design language using Thonet chairs as a case study. The system consists of parametric models based on shape grammars linked to structural analysis to provide an integrated generative process for mass customization in the furniture industry.
wos WOS:000335665500060
keywords Thonet; furniture design; finite element method; parametric design; mass customization
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_405
id sigradi2011_405
authors García Alvarado, Rodrigo; Lyon Gottlieb, Arturo
year 2011
title De la Optimización Estructural Evolutiva al Diseño Paramétrico basado en desempeño; experiencias en plataformas integradas para estrategias de diseño multidisciplinares [From Evolutionary Structural Optimization to performance driven Parametric Design; experiences on integrated platforms for multidisciplinary design strategies]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 201-205
summary This paper presents a research developed by a multidisciplinary team looking into the use of Topological Optimization and its integration to collaborative design platforms in early stages of design processes. The interest of the experience is focused on how Evolutionary Structural Optimization (ESO) models can be further integrated into parametric design software for the definition of adaptable components in response to environmental and architectural criteria. This research explores platforms and processes for the collaboration between software development, structural engineers and architects in early stages of design as a possibility to relate the potential of computational processes with the definition of design criteria involving architectural, structural and environmental parameters.
keywords Evolutionary Structural Optimization; Topological Analysis; Parametric Design; Performance Driven Design
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2011_p145
id cf2011_p145
authors Georgiou, Odysseas
year 2011
title Interactive Structural Analysis
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 833-846.
summary This paper re-approaches structural engineering through an interactive perspective by introducing a series of tools that concatenate parametric design with structural analysis, thus achieving interoperability between form and its structural performance. Parametric Design is linked to Structural Analysis using computer programming to establish a common interactive framework that leads to performance based designs that respond to structural constrains and conditions in an interactive manner. A series of examples illustrate the synergy between form and structure by interactively modelling, analysing and visualizing its response.
keywords Structural engineering, parametric design, interoperability,free form,interactive,analysis
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
doi https://doi.org/10.52842/conf.caadria.2011.175
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_054
id caadria2011_054
authors Herr, Christiane M.
year 2011
title Gains, losses and limitations in designing parametrically: A critical reflection of an architectural design studio in China
doi https://doi.org/10.52842/conf.caadria.2011.569
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 569-578
summary This paper argues that learning to design parametrically in the architectural studio entails gains but also losses, since the parametric design approach tends to and encourage certain patterns of thought while discouraging others. This investigation complements previous research focusing mostly on technological aspects. Based on observational data from a parametric design studio in China, this paper discusses how parametric designing can pose challenges to existing design values and approaches, specifically within a Chinese context. It further draws attention to the limitations of parametric designing, which in the observed cases required both students and teachers to break and extend parametric models besides and beyond parametric variation to make them work architecturally. This paper aims to inform educators employing parametric designing in their architectural design studios as well as researchers who examine such studios.
keywords Parametric design; studio; design culture; education
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2011_007
id caadria2011_007
authors Ko, Kaon and Salvator-John Liotta
year 2011
title Digital tea house: Japanese tea ceremony as a pretext for exploring parametric design and digital fabrication in architectural education
doi https://doi.org/10.52842/conf.caadria.2011.071
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 71-80
summary This paper reviews the Digital Tea House, a joint workshop in August of 2010 held at the University of Tokyo, Department of Architecture, together with Columbia University GSAPP. Three pavilions for hosting ceremony were designed and built in less than one month, in an attempt to bridge technology and culture not only through design but also fabrication. Issues addressed in the process included applications of computational design, interpretations of tradition and culture in spatial or activity oriented expressions, structural stability, to practical solutions for quick physical materialization. Three teams comprised of 6 to 8 students, each a blend of different nationalities, ultimately produced 3 full-scale tea houses with the same software, primary material, budget, and principal fabrication method.
keywords Digital fabrication; academic workshop; computational design; design-build; tea house
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac20119401
id ijac20119401
authors Ko, Kaon; Salvator-John Liotta
year 2011
title Decoding Culture Parametrically: Digital Tea House Case Studies
source International Journal of Architectural Computing vol. 9 - no. 4, 325-338
summary This paper reviews the Digital Tea House, a workshop held at the University of Tokyo with the aim to build three pavilions for hosting tea ceremony.As first attempts on cultivating formal innovations resulting from digital design process applied to construction of tea houses, the works convey that parametric design can be a mechanism through which architects are able to produce new images of a tea house and renew its conceptual meanings, and that it can be a tool to retain architecture convergent with cultural values.The authors analyze issues addressed in the workshop that range from applications of computational design, interpretations of tradition, structural stability, to solutions for quick physical materialization within limited time and budget.This paper clarifies the following: First, that parametric processes are not contradictory to traditional cultural principles; and second, how traditional elements of the tea house were decoded and formally reinterpreted through parametric designs.
series journal
last changed 2019/07/30 10:55

_id ecaade2011_008
id ecaade2011_008
authors Kolovou, Eleni
year 2011
title Sensitive skin design: a generative approach
doi https://doi.org/10.52842/conf.ecaade.2011.453
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.453-460
summary This paper presents a framework of study of an iterative evolution of a modular component designed in an attempt to simulate material constraints and motional response with the perspective to be multiplied into a dynamic system. The main scope of this project was to investigate the process that maps a territory of possibilities, among which lies the potential architectural solution. In order to explore this field a parametric model has been developed. The simulation of the materials nature has been embedded in the algorithm on a geometry constraint basis in an attempt to simulate the behavior of the system comprised by elements in tension and torsion. A multiplication process of the module was introduced at a following stage of the research focusing on regular tessellations and circle packing on the plane. Responsive performance has been studied on a selected specimen of the evolution given a hypothetic context scenario according to which the scale of the design was set at a façade component level. The resulting responsive permeable skin was presented as a potential design solution among the successive approximations of this algorithm. Along the course of the research the parametric tools were used not only as a medium of synchronous output visualization but also as a mechanism to simulate material properties, structural constrains, environmental data, and worked as stimuli of inspiration driving the overall design process.
wos WOS:000335665500052
keywords Parametric design; generative design; simulation and visualization; responsive skin
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac20109203
id ijac20109203
authors Martini, Kirk
year 2011
title Optimization and parametric modelling to support conceptual structural design
source International Journal of Architectural Computing vol. 9 - no. 2, 151-166
summary The paper describes software combining parametric geometric modeling with a version of the harmony search method, modified to support multimodal structural optimization. Researchers have recognized the potential of population-based optimization methods, such as genetic algorithms, to support multimodal optimization: that is, generating a diverse range of good alternative solutions, rather than a single best solution. Among these methods is the harmony search method, which has been demonstrated to be efficient in many unimodal structural optimization problems. The paper describes a new version of the harmony search method, implemented as an assembly within Bentley's Generative Components, enabling high-level control of geometry. The new method is demonstrated on an bridge supported by two inclined parabolic arches, a structure where GC controls a complex geometry with a single variable. Comparative studies of the example find that the new method is more effective than conventional harmony search in consistently finding multiple good solutions.
series journal
last changed 2019/05/24 09:55

_id ijac20109303
id ijac20109303
authors Meyboom, AnnaLisa
year 2011
title Heavy Design
source International Journal of Architectural Computing vol. 9 - no. 3, 251-258
summary Digital tools in architecture have a powerful capability that we have only begun to explore; the questions to ask of them are perhaps not what they can do but what should we use them for? To date, much of the work done in the area of computational design has been used as elaborate patterning - some have called it ‘ornament’. The significance of this ornament is not only pleasure but in its use of digital patterns to represent our current complex and digital age.This representation in itself is not problematic; however, what is problematic is the lack of other meaningful uses of the digital form-generating tools and their distance from a culture of making. The main failing of our use of digital design (algorithmic or not) in architecture to this point is its inability to translate smoothly from the digital world to the physical world. The main reasons for this difficulty in translation are gravity and inherent material properties. Working with gravity and its physical implications is generally considered the role of the structural engineer; as such, engineers have generally created digital tools in this area.The engineer's methodology analyses a structure based on complex structural analysis programming but in order to do this, a detailed description of the structure must already exist. This is not useful in preliminary stages of design. However, the generation of architecture within an environment, which already includes structural principles, may bring us one step closer to this transition of virtual to physical by including gravity in architectural generation while not diminishing the creative form-generating process. An approach has been proposed which responds with a concept of ‘heavy design’. This type of approach incorporates logics from other disciplines, primarily structural engineering, to inform design. The design process incorporates the structural behavior of a system into the architectural model. Engineering offers a mathematical interpretation of the physical world and this is inherently suited to algorithmic design because it is already in equation form. It can thus be programmed into the architectural form generational software. The variables used in the equations become the variables within the architectural design and this inherently brings the natural physical laws to the architecture through a numerical, algorithmic method. The design produced is not a singular answer but rather a responsive vocabulary of a structural system, which is then employed in design in differing conditions. The architecture produced is both function and ornament, having cultural interpretation but carrying out many engineering tasks: a true parametric architecture.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_172
id ecaade2011_172
authors Okuda, Shinya; Ping, Chua Liang
year 2011
title Form Follows Performance: Structural Optimisation and the Cost-effectiveness of Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2011.837
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.837-842
summary The presented paper describes a series of studio-based research projects on structural optimisation and the cost-effectiveness of digital fabrication that aim to balance stress distribution across thick walls or a rib density of slabs. As a consequence of the structural optimisations, the results tend to be non-uniform shapes that are not ideal for cost-effective fabrication. This paper introduces a few simple models to balance structural optimisation and fabrication cost-effectiveness. It involves relatively simple structural simulations as the design inputs, and then converts the simulation results into various architectural forms using parametric 3D modelling tool (McNeel Rhinoceros v4, Grasshopper v0.8) before fabricating them using digital fabrication technologies. The major challenge of this study is how to translate simulation results into architectural components/overall building shapes and how to fabricate complex forms in a cost-effective manner.
wos WOS:000335665500096
keywords Digital Fabrication; Mass Customisation; Cost-effectiveness; Structural Optimization; Parametric
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_049
id caadria2011_049
authors Richards, Daniel
year 2011
title Towards morphogenetic assemblies: Evolving performance within component-based structures
doi https://doi.org/10.52842/conf.caadria.2011.515
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 515-524
summary Performative design can be understood as the combined usage of spatial analysis simulations and form generation procedures to imbue architectural form with material characteristics and behaviours which define desirable structural, environmental and economic performance. However, to date, design processes that facilitate the integration of ‘form generation’ and ‘spatial analysis’ remain under-developed, making existing performative design methodologies highly reliant upon the manual execution of analysis and evaluation procedures. This paper presents an evolutionary design process that uses integrative computational pipelines and generatively defined component-based assemblies to produce performative structures in response to solar performance. The resulting structures demonstrate how performative composite behaviour can emerge within ‘disassociated’ componential assemblies and produce complex formal interrelationships which surpass simplistic parametric logics. This offers new possibilities for conceiving highly integrated ‘morphogenetic assemblies’ and suggests trajectories for further research within the field of morphogenetic design.
keywords Morphogenetic; evolution; performative, assemblies
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac20109204
id ijac20109204
authors Shepherd, Paul; Roly Hudson, David Hines
year 2011
title Aviva Stadium: A parametric success
source International Journal of Architectural Computing vol. 9 - no. 2, 167-186
summary The Aviva Stadium, Dublin, is the first stadium to be designed from start to finish using commercially available parametric modelling software. A single model in Bentley’s Generative Components was shared between architects and engineers, which allowed the optimised design of form, structure and fac_ade. The parametric software was extended where necessary to integrate with structural analysis and to automate fabrication. By reducing the overhead associated with design iterations, this approach allowed detailed exploration of options and early identification and resolution of potential problems. In this paper, the authors add to the body of scientific knowledge by describing in detail the methods which led to the construction of the Aviva Stadium.This paper is written in light of the completed building and provides information on the generation and control of the envelope geometry, development and analysis of structure and documentation for construction.Whilst these components have been discussed independently previously [1–4], here these aspects are drawn together for the first time and are presented alongside thoughts on the manufacturing and construction processes from the project architect.
series journal
last changed 2019/05/24 09:55

_id ijac20109202
id ijac20109202
authors van Embden, Maria Vera; Andres, Michela Turrin, Peter von Buelow
year 2011
title ARCHITECTURAL DNA: A genetic exploration of complex structures
source International Journal of Architectural Computing vol. 9 - no. 2, 133-150
summary The approach demonstrated in this paper uses Evolutionary Computation (EC) to enhance and modify structural form based on biological micro structures.The forms are modified to conform to new boundary conditions associated with architectural structures.The process is based on a Genetic Algorithm (GA) which visually exposes for the designer a range of good performing solutions within thedesign space. The application of the GA is combined with parametric software, in this case Generative Components (GC). The program described here as ParaGen (Parametric Genetic Algorithm), uses a Finite Element Analysis (FEA) to determine the structural performance of the forms.This allows the designer to manipulate and optimize a parametrically defined model based on predefined criteria and parameters.The opportunities and limitations of this design process are explored and evaluated based on an experimental case study using topologies based on radiolarian skeletons.The design procedure described includes user interaction in the exploration of solutions that perform well both for the explicitly defined programmatic criteria (structural) as well as for the implicit criteria provided by the designer (visual aesthetic).
keywords structural morphology, parametric design, genetic algorithm, structural optimization.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_080
id ecaade2011_080
authors Velasco, Rodrigo; Robles, Daniel
year 2011
title Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates
doi https://doi.org/10.52842/conf.ecaade.2011.539
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.539-548
summary This paper presents the current development of an in-progress academic research project where a particular design problem, that of building envelopes for tropical climates, is parametrically defined and its possible solutions assessed by means of data correlations and virtual simulations. In doing do so, the authors have devised a parametric structure based on factorial definitions whereby environmental, structural and life cycle analyses are taken into consideration to determine the design possibilities subsequently defined in terms of their physical configuration, constituent materials, construction processes and dynamic behaviour. Particular emphasis is placed on the embedded energy and functional performance of the resulting designs. The proposed methodological model is graphically presented, and its practical potential illustrated by a particular case of application. It should be taken into account, however, that this is a work in progress, and only the first step towards theconstruction of a simulation based methodology for architects and designers.
wos WOS:000335665500062
keywords Parametric design; building envelopes; green envelopes; tropical architecture
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_155
id ecaade2011_155
authors Vrontissi, Maria; Azariadi, Styliani
year 2011
title Digital tools in the architectural design of a geodesic dome: The case-study of the bearing structure of an artificial sky lighting installation
doi https://doi.org/10.52842/conf.ecaade.2011.511
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.511-520
summary This article discusses the use of digital technology in the design and construction of a geodesic dome built in a student workshop as the bearing structure for an artificial sky lighting installation. Digital tools were used for the whole process from preliminary to detailed design, fabrication and assembly, in order to allow the investigation and precise representation of the geodesic geometry. However, limited possibilities, in combination with the intrinsic nature of the geometry, which allowed segregation of tasks, did not permit a full exploration of the potential of the digital continuum at that time; even though taking advantage of digital technologies, the process maintained some of its linear characteristics. A couple of years after the successful completion of the installation, the project is ‘revisited’ in retrospect, and the design process is ‘reengineered’ considering the design potential of recent advances in digital technology. In this work in progress, an attempt is made to work with an inclusive model that contains geometric, structural, material and manufacturing input and constraints and can inform design, fabrication and assembly processes, allowing for dynamic manipulation and control of parameters at any given time; thus, reconfiguring in real time the design, as well as the related processes.
wos WOS:000335665500059
keywords Digital tools; parametric design; geodesic dome; artificial sky
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_047
id ecaade2011_047
authors Wiertelarz, Kathrin M.
year 2011
title An exploration in teaching architectural design for construction and fabrication
doi https://doi.org/10.52842/conf.ecaade.2011.035
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.35-42
summary The intent of this paper is to examine experimental design methods in the field of architecture and their implementation in academic settings. The projects emerged during design research studio at the institute of digital design techniques at the university of Kassel and collaborative workshops with several institutes. The starting point of the teaching concept was a divergence from the usual methods and ways of thinking, allowing for new, innovative solutions to emergence during the design process. The main point was a development of novel spatial modules in coherence with material and structural considerations. The question of materiality becomes a crucial consideration. The characteristics of different materials used for models development did not just influenced geometrical possibilities but also intensify, explore and organize spatial and structural qualities of the projects.
wos WOS:000335665500002
keywords Research; Education and Practise; Generative and Parametric Digital Design Aids, Tools for Construction and Production
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_326018 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002