CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 288

_id cf2011_p145
id cf2011_p145
authors Georgiou, Odysseas
year 2011
title Interactive Structural Analysis
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 833-846.
summary This paper re-approaches structural engineering through an interactive perspective by introducing a series of tools that concatenate parametric design with structural analysis, thus achieving interoperability between form and its structural performance. Parametric Design is linked to Structural Analysis using computer programming to establish a common interactive framework that leads to performance based designs that respond to structural constrains and conditions in an interactive manner. A series of examples illustrate the synergy between form and structure by interactively modelling, analysing and visualizing its response.
keywords Structural engineering, parametric design, interoperability,free form,interactive,analysis
series CAAD Futures
email odysseas.georgiou@hub.com.cy
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email sherif.morad@gatech.edu
last changed 2012/02/11 19:21

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email robert.aish@autodesk.com
last changed 2022/06/07 07:54

_id caadria2011_002
id caadria2011_002
authors Bernal, Marcelo
year 2011
title Analysis model for incremental precision along design stages
doi https://doi.org/10.52842/conf.caadria.2011.019
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 19-18
summary With current energy analysis tools, architects and engineers cannot rely on the results of energy analyses because they do not report their level of precision. In addition, current tools also do not deliver feedback in real time. Thus, this research addresses the challenge of obtaining feedback in real-time while gradually increasing precision along design stages. For this purpose, this study merges parametric modelling (PM) technologies and the performance-based design (PBD) paradigm into a general design model. The model is based on a parametric and an energy analysis model that share the parameters of a building. The modular architecture of the model involves four main function types: an input processor, optional analysis functions embedding different calculation methods, a decision-maker, and a report generator function. For every step of the design evolution, the decisionmaker function generates a specific tree of analysis functions.
keywords Performance; decision-making; extensibility; knowledgebased design; design automation
series CAADRIA
email marcelo.bernal@gatech.edu
last changed 2022/06/07 07:52

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email a.t.chaszar@tudelft.nl
last changed 2012/02/11 19:21

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email pierre.cote@arc.ulaval.ca
last changed 2012/02/11 19:21

_id acadiaregional2011_020
id acadiaregional2011_020
authors Hudson, Roly; Drew MacDonald, Mark Humphreys
year 2011
title Race track modeler. Developing an Iterative Design Workflow Combining a Game Engine and Parametric Design
doi https://doi.org/10.52842/conf.acadia.2011.x.v2b
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper documents the continuing development and testing of a novel digital work flow established and implemented for the design and redevelopment of formula one racing tracks. The Race Track Modeler (RTM) tool uses a game engine to simulate driving around proposed track designs. Performance data from the simulation is combined with real data acquired from analysis of vehicle mounted accident data recorders (ADRs). The output of the tool is a graphical representation of simulated stopping positions of vehicles that have lost control and left the track. This information directly informs the design of motor racing facilities; the zoning of spectator facilities, position and specification of crash barriers (if required), and surface material selection for the run-off zones (the area where vehicles are expected to stop after losing control and leaving the track). The RTM can suggest further design changes to the track geometry which are then fed back into the game engine. The project involves methods of binding analysis of design directly to geometry together with input from interactive controls. The RTM has been developed and tested during the redevelopment of Silverstone race track in the United Kingdom (figure 1) this paper documents the current state of the tool and concludes with proposed future developments.
series ACADIA
last changed 2022/06/07 07:49

_id acadia11_52
id acadia11_52
authors Iwamoto, Lisa; Scott, Craig
year 2011
title Material Computation: Voussoir cloud
doi https://doi.org/10.52842/conf.acadia.2011.052
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 52-55
summary In contrast to such structurally pure models, the power of computation has opened possibilities for at once muddying and synthesizing geometry, structure and material performance. Where the earlier twentieth century experiments employed a more or less uniform tectonic based on symmetrical structural diagrams, contemporary analysis and design techniques can efficiently adapt a material system to address variable, localized, and non-symmetrical loading conditions. This has resulted in projects characterized by non-optimized structural forms that register the impacts of geometry on material behavior with a deviated tectonic system.
series ACADIA
type keynote paper
email liwamoto@berkeley.edu
last changed 2022/06/07 07:50

_id ecaade2011_068
id ecaade2011_068
authors Ma, Jin Yul; Choo, Seung Yeon; Seo, Ji Hyo; Jeong, Seung Woo
year 2011
title A Study on BIM based Energy Efficient Design Improvement for Rural Standard Drawing and Specification in South Korea: Focusing on Using Buffer-Zone
doi https://doi.org/10.52842/conf.ecaade.2011.430
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.430-438
summary Throughout the world, global warming has been considered a severe problem, which has led to efforts being made for technical development to reduce greenhouse gases in the building sector. As more attention has been paid to energy consumption by residential housing in the building sector, policies and studies on domestic dwellings tend to focus on quality improvement and energy-efficient housing development rather than quantitative housing supply. Yet, policies and guidelines considering residential energy efficiency are inclined to focus on performance and lack in integrated consideration in connection with design. Hence, it seems necessary to compare and analyze design and energy efficiency and to study correlations between housing design and energy. Lately, BIM technology has been used in buildings domestically and proved reliable in respect of its features that enable overall comparison and prediction of housing design, performance and efficiency. The present study is to use the BIM technology to analyze energy consumption and the standard drawing schemes for rural areas to find ways to improve efficient design in singles housing sector and to suggest how to take advantage of buffer zones and how to improve housing design in favor of energy efficiency.
wos WOS:000335665500049
keywords BIM; Energy Analysis Tool; Rural Standard Drawing; Buffer-Zone; Sustainable design
series eCAADe
email massida2@nate.com
last changed 2022/05/01 23:21

_id sigradi2023_108
id sigradi2023_108
authors Passos, Aderson, Jorge, Luna, Cavalcante, Ana, Sampaio, Hugo, Moreira, Eugenio and Cardoso, Daniel
year 2023
title Urban Morphology and Solar Incidence in Public Spaces - an Exploratory Correlation Analysis Through a CIM System
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1655–1666
summary The walkability of open spaces has been highlighted in current discussions about the production of designed environments in urban contexts (Matan, 2011). To contribute to this theme, this work selects the environmental comfort of open spaces as its element of study. The production of urban space was investigated, specifically in regard to urban morphology, understanding that city design directly influences environmental comfort (Jacobs, 1996). This work addresses the geographic context of low latitudes, specifically in hot and humid climate zones of Brazil, and, in this context, according to NBR 15220 (national performance standards), shading is one of the main comfort strategies, so solar incidence was the approached environmental phenomenon. Thus, this work presents a digital system that performs exploratory analysis on the correlations between urban form indicators and environmental performance indicators, specifically solar incidence. The method consists of three steps: urban form modeling (1), indicator measurement (2) and correlation analysis (3). In the first stage, different spatial sections of a city in Brazil were represented in the digital environment (1). This work’s implementation instrument is based on a City Information Modeling framework (Beirao et al., 2012). Visual Programming Interface (VPI) and Geographic Information Systems (GIS) tools were used, in addition to a Relational Database Management System (RDBMS). Then, for each urban clipping, the values of morphological indicators and the incidence of solar radiation were measured (2). Based on the values of the indicators, an exploration of their correlation was carried out by statistical methods (3). The results of the correlation analysis and their correspondent scatter plots are presented. Finally, possible applications of the results for the creation of prescriptive urban planning systems are discussed, seeking to promote a sustainable urban environment.
keywords Urban planning, Environmental comfort, Walkability, Urban morphology, Statistical methods.
series SIGraDi
email aderson.passos@gmail.com
last changed 2024/03/08 14:09

_id acadia11_152
id acadia11_152
authors Rael, Ronald; San Fratello, Virginia
year 2011
title Developing Concrete Polymer Building Components for 3D Printing
doi https://doi.org/10.52842/conf.acadia.2011.152
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 152-157
summary The creation of building components that can be seen as sustainable, inexpensive, stronger, recyclable, customizable and perhaps even reparable to the environment is an urgent, and critical focus of architectural research. In the U.S. alone, the construction industry produced 143.5 million tons of building-related construction and demolition debris in 2008, and buildings, in their consumption of energy produce more greenhouse gasses than automobiles or industry.Because the inherent nature of 3D printing opens new possibilities for shaping materials, the process will reshape the way we think about architectural building components. Digital materiality, a term coined by Italian and Swiss architects Fabio Gramazio and Matthias Kohler, describes materiality increasingly enriched with digital characteristics where data, material, programming and construction are interwoven (Gramazio and Kohler, 2008). The research aspires towards this classification through the use of parametric modeling tools, analytic software and quantitative and qualitative analysis. Rapid prototyping, which is the automatic construction of physical objects using additive manufacturing technology, typically employs materials intended for the immediate analysis of form, scale, and tactility. Rarely do the materials used in this process have any long-term value, nor does the process - except in rare cases with expensive metal prototyping - have the ability to create actual and sustainable working products. This research intends to alter this state of affairs by developing methods for 3D printing using concrete for the production of long-lasting performance-based components.
series ACADIA
type work in progress
email r@el.net
last changed 2022/06/07 08:00

_id caadria2011_058
id caadria2011_058
authors Reffat, Rabee M.
year 2011
title Impact analysis of digital-based architecture curriculum on students’ learning
doi https://doi.org/10.52842/conf.caadria.2011.609
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 609-618
summary This paper reports the findings of assessing the impact of current digital-based architecture curriculum in architecture at KFUPM on students’ learning primarily from students’ perspectives. The paper addresses both generic and specific impacts of current digital-based architecture curriculum on students’ learning. The specific impacts include: level of achieving better understanding of the architectural issues of buildings, and impacts of media qualities on understanding architecture. The paper introduces a performance improvement plan aimed at enhancing students’ learning in the digital-based architecture curriculum and to accommodate the evolving nature of information technology applications in the building and construction industry.
keywords Digital architecture curriculum; students’ learning; impact analysis; digital design education
series CAADRIA
email rabee.reffat@gmail.com
last changed 2022/06/07 08:00

_id caadria2011_049
id caadria2011_049
authors Richards, Daniel
year 2011
title Towards morphogenetic assemblies: Evolving performance within component-based structures
doi https://doi.org/10.52842/conf.caadria.2011.515
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 515-524
summary Performative design can be understood as the combined usage of spatial analysis simulations and form generation procedures to imbue architectural form with material characteristics and behaviours which define desirable structural, environmental and economic performance. However, to date, design processes that facilitate the integration of ‘form generation’ and ‘spatial analysis’ remain under-developed, making existing performative design methodologies highly reliant upon the manual execution of analysis and evaluation procedures. This paper presents an evolutionary design process that uses integrative computational pipelines and generatively defined component-based assemblies to produce performative structures in response to solar performance. The resulting structures demonstrate how performative composite behaviour can emerge within ‘disassociated’ componential assemblies and produce complex formal interrelationships which surpass simplistic parametric logics. This offers new possibilities for conceiving highly integrated ‘morphogenetic assemblies’ and suggests trajectories for further research within the field of morphogenetic design.
keywords Morphogenetic; evolution; performative, assemblies
series CAADRIA
email D.Richards@mmu.ac.uk
last changed 2022/06/07 07:56

_id ijac20109202
id ijac20109202
authors van Embden, Maria Vera; Andres, Michela Turrin, Peter von Buelow
year 2011
title ARCHITECTURAL DNA: A genetic exploration of complex structures
source International Journal of Architectural Computing vol. 9 - no. 2, 133-150
summary The approach demonstrated in this paper uses Evolutionary Computation (EC) to enhance and modify structural form based on biological micro structures.The forms are modified to conform to new boundary conditions associated with architectural structures.The process is based on a Genetic Algorithm (GA) which visually exposes for the designer a range of good performing solutions within thedesign space. The application of the GA is combined with parametric software, in this case Generative Components (GC). The program described here as ParaGen (Parametric Genetic Algorithm), uses a Finite Element Analysis (FEA) to determine the structural performance of the forms.This allows the designer to manipulate and optimize a parametrically defined model based on predefined criteria and parameters.The opportunities and limitations of this design process are explored and evaluated based on an experimental case study using topologies based on radiolarian skeletons.The design procedure described includes user interaction in the exploration of solutions that perform well both for the explicitly defined programmatic criteria (structural) as well as for the implicit criteria provided by the designer (visual aesthetic).
keywords structural morphology, parametric design, genetic algorithm, structural optimization.
series journal
last changed 2019/05/24 09:55

_id acadia10_327
id acadia10_327
authors Vassigh, Shahin; Herrera, Silvana
year 2010
title Interactive Teaching through Simulation Environments
doi https://doi.org/10.52842/conf.acadia.2010.327
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 327-332
summary Spurring new and innovative building design will be critical to the urban energy and economic future of the nation. The operation of completed buildings account for 48% of the nation’s annual greenhouse gas emissions, and 76% of all electricity generated by U.S. power plants goes to supply the building sector. Therefore developing and applying new and innovative sustainable building design will have a measurable impact on the environment. Recent studies show sustainable building design is closely linked to system integration, where various components of a building work in confluence to produce synergetic benefits. As a result, a critical component of sustainable design involves a clear understanding of building systems operation, interaction, and the selection parameters. A consideration of suitable building systems, gauging their interaction, and proposing well integrated systems can lead to producing efficient models of sustainable buildings with minimal impact on the environment. The following paper outlines the progress on a project entitled “Building Literacy: the Integration of Building Technology and Design in Architectural Education.” The project develops a digital tool for teaching/learning architectural technology from an integrated systems perspective. The project attempts to immerse students in a simulated environment that is based on the real life practice of architecture. The project accomplishes this by harnessing the capabilities of simulation and dynamic modeling programs, as well as the state of art graphic media, to create compelling and rewarding reasons for students’ engagement in the lear ning process. The project involves a multidisciplinary team of faculty from Florida International University, University at Buffalo the State University of New York, and Iowa State University and is funded by the US Department of Education for the period of 2007-2011.
keywords educational software, interactive learning, interactive teaching, simulation programs, building performance, building integrated systems,
series ACADIA
type normal paper
email svassigh@fiu.edu
last changed 2022/06/07 07:58

_id caadria2021_231
id caadria2021_231
authors Wong, Kwan Ki Calvin and van Ameijde, Jeroen
year 2021
title In-Between Spaces: Data-driven Analysis and Generative Design for Public Housing Estate Layouts
doi https://doi.org/10.52842/conf.caadria.2021.2.397
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 397-406
summary As Hong Kong constructs increasingly high-density, high-rise public housing estates to increase land use efficiency, public in-between spaces are more constrained, which impacts the quality of social relations, movements and daily practices of residents (Shelton et al. 2011; Tang et al. 2019). Current planning practices are focused on the achievement of quantitative performance measures, rather than qualitative design considerations that support residents experiences and community interaction. This paper presents a new methodology that combines urban analysis and generative design for the regeneration of social housing estates, based on the spatial and social qualities of their in-between spaces.
keywords Social Housing; Public Open Space; Generative Design; Urban Planning
series CAADRIA
email kkwongcalvin123@gmail.com
last changed 2022/06/07 07:57

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
doi https://doi.org/10.52842/conf.caadria.2011.717
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email simone.garagnani@unibo.it
last changed 2022/06/07 07:50

_id caadria2011_071
id caadria2011_071
authors Huang, Weixin; Weiguo Xu and Tao Wang
year 2011
title Structural form generation using interactive genetic algorithm
doi https://doi.org/10.52842/conf.caadria.2011.751
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 751-760
summary Structural form design could be considered as a bi-objective problem which should satisfy both the efficiency criterion of structural engineering and the aesthetic criteria of architects. This research tries to introduce Interactive Genetic Algorithm (IGA) in the problem of structural form design. It combines the structural analysis performed by computer and aesthetic evaluation by architects into a bi-objective IGA process, in order to generate structural forms which are preferred by the architects and at the same time structurally optimal. In this research, the structure generated consists of two kinds of members, truss and beam. Generation and evolution of structure is based on a triangular element composed of several members. Through experiment of the IGA structural form design system, it is found the structure forms are optimized as the evolutionary process proceeds, and the aesthetic preference of architect is also transferred from generation to generation. It is also revealed that the two criteria have mutual restrictions, which resulted in compromised results.
keywords Bi-objective optimization; structural form; interactive genetic algorithm; subjective evaluation
series CAADRIA
email huangwx@mail.tsinghua.edu.cn
last changed 2022/06/07 07:49

_id caadria2011_033
id caadria2011_033
authors Salama, Tina A.
year 2011
title Second-order prosthesis: Human-aided design within the expanded field of ecology
doi https://doi.org/10.52842/conf.caadria.2011.345
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 345-354
summary This paper defines second-order prosthesis in which the human subject, by virtue of her corporeality or imagination, is resourced by a technological system. Underpinning this definition is Massumi’s notion of asymmetrical, symbiotic prosthesis and the second- order cybernetic challenge to objectivity. Through the case study of an immersive, sensor-based, interactive artwork, it is found that there are resonances between technology engaged in second-order prosthesis and the ideology of biology. Notions of survival, reproduction and evolution become a critical part of second-order prosthetic discourse and an expanded field of ecology is identified as the territory of analysis for resulting techno-human relations. A second case study explores computer-aided design (CAD) and virtual space. This study confirms the status of the technological in an expanded ecology as both CAD and virtual space resource imagination in the production of human-aided design.
keywords Second-order prosthesis; expanded ecology; prosthesis; computer-aided design; human-aided design
series CAADRIA
email info@tinasalama.com
last changed 2022/06/07 07:56

_id ecaade2011_152
id ecaade2011_152
authors Villazón, Rafael; Romero R., William A.; Hernández, José Tiberio
year 2011
title Media Space for Architecture Studio Courses: Interactive project analysis and discussion in Architecture Studio
doi https://doi.org/10.52842/conf.ecaade.2011.285
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.285-292
summary This paper presents a Media Space designed to reinforce the learning experience in the context of Architecture Studio courses by supporting interactive analysis and discussion of architectural projects. Based on the utilisation of information technologies, this initiative attempts to interpret the meaning of the traditional master/apprentice relationship and the project-based learning model. This paper summarizes the course methodology and outlines the aspects of interest in order to improve the learning experience. Also presents the main concepts behind the users’ interaction process in a session such as Catalogue, Stage, Mosaic and Sketch-Based Annotations. The result is a suite of modular applications and hardware engineered to provide interactive visualisation, collaborative tools and teleconferencing.
wos WOS:000335665500032
keywords Architecture studio courses; computer aided instruction; computer mediated communication
series eCAADe
email rvillazo@uniandes.edu.co
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 14HOMELOGIN (you are user _anon_290982 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002