CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 557

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id acadiaregional2011_008
id acadiaregional2011_008
authors Krietemeyer,Elizabeth A.; Anna H. Dyson
year 2011
title Electropolymeric Technology for Dynamic Building Envelopes
doi https://doi.org/10.52842/conf.acadia.2011.x.s0s
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary Human health and energy problems associated with the lack of control of natural light in contemporary buildings have necessitated research into dynamic windows for energy efficient buildings. Existing dynamic glazing technologies have made limited progress towards greater energy performance for curtain wall systems because they are still unable to respond to dynamic solar conditions, fluctuating building demands, and a range of user preferences for visual comfort and individual control. Recent breakthroughs in the field of information display provide opportunities to transfer electropolymeric technology to building envelopes that can achieve geometric and spectral selectivity in concert with pattern variation within the façade. Integrating electroactive polymers within the surfaces of an insulated glazing unit (IGU) could dramatically improve the energy performance of windows while enabling user empowerment through the control of the visual quality of this micro-material assembly, in addition to allowing for the switchable patterning of information display. Using parametric modeling as a generative design and analysis tool, this paper examines the technical intricacies linking system variables with visual comfort, daylight quality, and pattern design of the proposed electropolymeric dynamic facade technology.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_022
id ecaade2011_022
authors Achten, Henri
year 2011
title Degrees of Interaction: Towards a Classification
doi https://doi.org/10.52842/conf.ecaade.2011.565
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.565-572
wos WOS:000335665500065
summary In architecture various approaches have been developed do deal with changing demands on the building. The most recent development is interactive architecture. In this paper we aim to outline what interactive architecture is. First we define the type of performance behavior that an interactive building or environment has. Following, we consider the relation between the system and the user. We derive four types of relations, characterized as “perfect butler,” “partner,” “environmental,” and “wizard.” Interactive systems are composed of sensors, controllers, actuators, and materials. Various degrees of interactivity can be achieved with such systems, ranging from passive, reactive, autonomous, to agent systems. Complete with earlier discussion of design methods this provides the range of aspects that should be considered when designing interactive architecture.
keywords Interactive architecture; Human-Computer interaction; design theory
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2011_117
id ecaade2011_117
authors Albayrak, Canan; Tunçer, Bige
year 2011
title Performative architecture as a guideline for transformation: Defense Line of Amsterdam
doi https://doi.org/10.52842/conf.ecaade.2011.501
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.501-510
wos WOS:000335665500058
summary Performance as an architectural design paradigm has been emerging during the recent years. We have developed an understanding that we formalized as a taxonomy for performative architecture that considers performance from three points of view: health, safety and security performance; functional and efficiency performance; and psychological, social, cultural, and esthetic performance. This paper focuses on a design project that explores these ideas as a performative architecture proposal. The project focuses on the architectural transformation of the Defense Line of Amsterdam, 41 forts, as a green belt. This transformation considers a holistic approach of defining a general method and guideline. We developed a series of parametric models for the definition and generation of designs. The first model computes an urbanization level for each fort. Consequently, models are developed in 4 stages: regional design, urban design, building design, and production of a scale model, and these are applied in an iterative manner to reach design outcomes for the project.
keywords Performative architecture; performance evaluation; taxonomy; parametric modeling
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_084
id sigradi2011_084
authors Alves, Gilfranco; Pratschke, Anja
year 2011
title Mediação digital e revisão dos processos de design em Arquitetura [Digital mediation and review of design processes in Architecture]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 35-38
summary This paper presents partial results of doctoral research entitled Architecture, Semiotics and Second Order Cybernetics: observation, representation and performance in design process. The research is linked to the Nomads.usp research group and proposes a review of design process, considering the mediation of digital media by using concepts of Second order Cybernetics. This work start with the hypothesis that in a contemporary context, professional demands of architects and designers requires a different approach in relation to the concept of emergence in architecture, and also describes an experiment during the AA Visiting School SP 2011, the Strings / Supple Pavilion project.
keywords Design processes; digital media; emergence; performance.; Second-order Cybernetics
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2011_002
id caadria2011_002
authors Bernal, Marcelo
year 2011
title Analysis model for incremental precision along design stages
doi https://doi.org/10.52842/conf.caadria.2011.019
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 19-18
summary With current energy analysis tools, architects and engineers cannot rely on the results of energy analyses because they do not report their level of precision. In addition, current tools also do not deliver feedback in real time. Thus, this research addresses the challenge of obtaining feedback in real-time while gradually increasing precision along design stages. For this purpose, this study merges parametric modelling (PM) technologies and the performance-based design (PBD) paradigm into a general design model. The model is based on a parametric and an energy analysis model that share the parameters of a building. The modular architecture of the model involves four main function types: an input processor, optional analysis functions embedding different calculation methods, a decision-maker, and a report generator function. For every step of the design evolution, the decisionmaker function generates a specific tree of analysis functions.
keywords Performance; decision-making; extensibility; knowledgebased design; design automation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p092
id cf2011_p092
authors Bittermann, Michael S.
year 2011
title Sustainable Conceptual Building Design using a Cognitive System
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 297-314.
summary A cognitive system for conceptual building design is presented. It is based on an adaptive multi-objective evolutionary algorithm. The adaptive approach is novel and, in contrast with conventional multi-objective evolutionary algorithms, it explores the solution space effectively, while maintaining diversity among the solutions. The suitability of the approach for conceptual design of a multi-purpose building complex is demonstrated in an application. In the application, the goal of maximizing sustainability is treated by means of a model, which is established using neural computations. The approach is found to be suitable for treating the soft nature of the sustainability concept. Also, the capability of the approach to compare the performance of alternative solutions from an unbiased viewpoint, i.e. without committing a-priori to a relative importance among the performance aspects, is demonstrated.
keywords computational design, sustainable design, adaptive evolutionary algorithm, Pareto optimality, neural computation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadiaregional2011_031
id acadiaregional2011_031
authors Christenson, Mike
year 2011
title Parametric Variation Revealing Architectural Untranslatability
doi https://doi.org/10.52842/conf.acadia.2011.x.c8q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper describes a recently concluded graduate seminar which tested how form-generative design tactics of algorithmic work could be productively brought to bear on the conceptual analysis of existing buildings. The seminar did not seek to optimize performance or aesthetic value but simply to query the mechanics and consequences of translation as an act. Seminar participants mined existing buildings as sources for parametric rule-sets which were subsequently applied to varying media fields (e. g., physical materials, text, and graphics). This application revealed that specific media resist certain kinds of translation. This peculiar resistance suggested that characteristics of architecture exist which might broadly be called untranslatable.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 745e
id 745e
authors Derix C, Kimpian J, Mason J and Karanouh A
year 2011
title Feedback Architecture
source In Terri Peters (ed), Experimental Green Strategies: Ecological Design Research: Architectural Design (AD), Wiley and Sons, Nov-Dec 2011
summary Sustainable design and ecological building are the most significant global challenges for the design profession. To meet new building regulations and national targets for carbon emissions, all future buildings will be judged on their ‘green’ merits. For architects to maintain a competitive edge in a global market, innovation is now key; the design of new processes, technologies and materials that combat carbon emissions and improve the sustainable performance of buildings are paramount. Contemporary practices have responded by setting up multi- disciplinary internal research and development teams, with offices such as Foster + Partners, HOK and Aedas setting the bar for ground-breaking research and development. The aim of internal groups is often to adapt and create new technologies and materials and to borrow ways of working from other disciplines, to focus on innovation rather than incrementally increasing performance or efficiency. This title offers insights into how a wide range of established and emerging practices are rising to meet these challenges. In pursuit of integrated sustainability and low-energy building, material and formal innovation and new tools and technologies, it illustrates that the future of architecture is evolving in an exchange of ideas across disciplines. Incorporating the creation of new knowledge about ecological building within the profession, it also identifies the emergence of a collective will to seek out new routes that build in harmony with the environment.
keywords sustainability, morphology, performance, design computation
series journal paper
type normal paper
email
more http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047068979X.html
last changed 2012/09/20 17:07

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
doi https://doi.org/10.52842/conf.acadia.2011.170
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2011_p147
id cf2011_p147
authors Erbas, Irem; Bittermann Michael, Stouffs Rudi
year 2011
title Use of a Knowledge Model for Integrated Performance Evaluation for Housing (re)design Towards Environmental Sustainability: A Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 281-296.
summary This paper focuses on the development of a knowledge model in the context of energy efficiency and indoor climate interventions, their impacts on each other and on architectural design preferences (for instance architectural expression or any spatial functionality aspect) via an existing house case study. In addition, it attempts to discuss how this type of model can be a reference for a decision support tool and be applied to the (re)design of dwellings. The model is considered to provide an integral knowledge base for the design professional both to evaluate existing designs and to use it as a support during design and decision making in order to reach the best possible solution, with optimal performance in terms of indoor comfort, energy-efficiency and overall design performance. In other words, its aim is to enable the assessment of the performance of the end result with respect to design choices, beforehand. In this paper, design performance is modeled by means of fuzzy logic operations. It is a method to deal with subjective and vague requirements such as low energy consumption, low overheating risk, high comfort, etc. The method of intelligent information processing is explained and a partial application is presented.
keywords energy efficiency, indoor comfort, design decision support, knowledge modeling, performance evaluation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2013_104
id ecaade2013_104
authors Figueiredo, Bruno; Duarte, José Pinto and Krüger, Mário
year 2013
title Albertian Grammatical Transformations
doi https://doi.org/10.52842/conf.ecaade.2013.2.687
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 687-696
wos WOS:000340643600071
summary This paper presents a research on the use of shape grammars as an analytical tool in the history of architecture. It evolves within a broader project called Digital Alberti, whose goal is to determine the influence of De re aedificatoria treatise on Portuguese Renaissance architecture, making use of a computational framework (Krüger et al., 2011).Previous work was concerned with the development of a shape grammar for generating sacred buildings according to the rules textually described in the treatise. This work describes the transformation of the treatise grammar into another grammar that can also account for the generation of Alberti’s built work.
keywords Shape grammars; parametric modelling; generative design; Alberti; classical architecture.
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2011_p145
id cf2011_p145
authors Georgiou, Odysseas
year 2011
title Interactive Structural Analysis
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 833-846.
summary This paper re-approaches structural engineering through an interactive perspective by introducing a series of tools that concatenate parametric design with structural analysis, thus achieving interoperability between form and its structural performance. Parametric Design is linked to Structural Analysis using computer programming to establish a common interactive framework that leads to performance based designs that respond to structural constrains and conditions in an interactive manner. A series of examples illustrate the synergy between form and structure by interactively modelling, analysing and visualizing its response.
keywords Structural engineering, parametric design, interoperability,free form,interactive,analysis
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_100
id ecaade2011_100
authors Hakak, Alireza M.; Biloria, Nimish
year 2011
title New perception of virtual environments, Enhancement of creativity: Increasing dimension of design starting point
doi https://doi.org/10.52842/conf.ecaade.2011.967
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.967-975
wos WOS:000335665500111
summary The digital era allows for a new domain of architectural experience. Within a virtual environment designs can be created that go beyond the mere accommodation of literal functions, and that affect and contribute to the human experience by dynamically interacting with and affecting the inhabitants’ life. A key point in “creativity”, considering different disciplines, is the role of previously gained experiences, which cause the emerging of intuition. Accentuating the role of new experiences in enhancing the intuition, by designing in an imaginary world, stands to be an interesting move. Detached from the real one in sense of time and matter, the imaginary world enables the designer to cross the borderline of reality. The hypothesis underlying this ongoing research, from a cognitive point of view, is that the extensiveness of experiences gained by exploring unconventional virtual environments relates positively to both creative performance (enhancing interactivity, lateral thinking, idea generation, etc) and creativity-supporting cognitive processes (retrieval of unconventional knowledge, recruitment of ideas from unconfined virtual environments for creative idea expansion). Practically, the authors propose starting the design from a point cloud in a virtual environment that can be manipulated by the designer immersing in this environment.
keywords Virtual Environment; Experience; Enhancing creativity; Point cloud
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_242990 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002