CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 563

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
doi https://doi.org/10.52842/conf.acadia.2011.234
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_036
id caadria2011_036
authors Chae, Hee Hwa; Mi Jeong Kim, Ju Hyun Lee and Xiangyu Wang
year 2011
title A work service model of the ubiquitous office
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 375-384
doi https://doi.org/10.52842/conf.caadria.2011.375
summary In recent years, office environments adopt ubiquitous computing with a focus on collaboration and mobile communication to promote real-time enterprises. Within this context, this study deals with a significant issue on the ubiquitous office environments by understanding human behaviors and works. We propose a ubiquitous office model considering the correlation between ubiquitous computing technologies and work services in the office. Two attributes are focused, collaboration and mobility, as identifier for categorizing the work types. The classic types of work services have variations in the amount of communication and the proportion of working outside of the office. The proposed work service model includes territorial and non-territorial services for the ubiquitous office to enable workers in and out of the office to interact with each other. The findings in this paper would be a theoretical basis for embodying the intelligent office which supports office works efficiently and effectively.
keywords Ubiquitous office; work service model; ubiquitous computing; context awareness; collaboration
series CAADRIA
email
last changed 2022/06/07 07:55

_id 745e
id 745e
authors Derix C, Kimpian J, Mason J and Karanouh A
year 2011
title Feedback Architecture
source In Terri Peters (ed), Experimental Green Strategies: Ecological Design Research: Architectural Design (AD), Wiley and Sons, Nov-Dec 2011
summary Sustainable design and ecological building are the most significant global challenges for the design profession. To meet new building regulations and national targets for carbon emissions, all future buildings will be judged on their ‘green’ merits. For architects to maintain a competitive edge in a global market, innovation is now key; the design of new processes, technologies and materials that combat carbon emissions and improve the sustainable performance of buildings are paramount. Contemporary practices have responded by setting up multi- disciplinary internal research and development teams, with offices such as Foster + Partners, HOK and Aedas setting the bar for ground-breaking research and development. The aim of internal groups is often to adapt and create new technologies and materials and to borrow ways of working from other disciplines, to focus on innovation rather than incrementally increasing performance or efficiency. This title offers insights into how a wide range of established and emerging practices are rising to meet these challenges. In pursuit of integrated sustainability and low-energy building, material and formal innovation and new tools and technologies, it illustrates that the future of architecture is evolving in an exchange of ideas across disciplines. Incorporating the creation of new knowledge about ecological building within the profession, it also identifies the emergence of a collective will to seek out new routes that build in harmony with the environment.
keywords sustainability, morphology, performance, design computation
series journal paper
type normal paper
email
more http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047068979X.html
last changed 2012/09/20 17:07

_id cf2011_p033
id cf2011_p033
authors Dorta, Tomas; Kalay Yehuda, Lesage Annemarie, Perez Edgar
year 2011
title Comparing Immersion in Remote and Local Collaborative Ideation Through Sketches: a Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 25-40.
summary Sketches are used in design to support ideation, communication, and collaboration because of their intuitiveness, abstraction, ambiguity and inaccuracy. Design collaboration using freehand sketches is possible through whiteboard software on the Internet. Designers can co-design and share design referents through these tools while adding gestures and expressions using web cams. Freehand sketching using whiteboard software retains the same proportion and scale problems as traditional sketching on paper, but adds digital behaviour (pen tablet display, undo, etc.) and the ability to share sketches in real time with a remote design team. Still, designers are not immersed in their representations. Moreover, such representations can include errors because designers work without reference to real-life perspective views. We developed a system, called the Hybrid Ideation Space (HIS) that allows designers to be immersed in their freehand sketches. The system supports local and remote collaboration, allowing designers to be literally inside their life sized, real time representations, while sharing them with remote collaborators who use another HIS. This paper presents a case study comparing the HIS to conventional whiteboard software (Vyew™) in a context of local and remote design collaboration on two landscape architecture projects. Two multidisciplinary teams worked on the first steps of two ad-hoc projects. The goal was to make an initial observation of the impact of immersion and see if it delivers benefits to collaborative ideation. Two methodological tools supported the study: the Design Flow for the experience that includes the NASA TLX to measure the workload, and the Collaborative Ideation Loop (CI-Loop) for design collaboration.
keywords Collaboration, ideation, immersion, sketches, whiteboard
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_123
id ecaade2011_123
authors Gül, Leman Figen
year 2011
title What we learnt from design teaching in collaborative virtual environments
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.203-212
doi https://doi.org/10.52842/conf.ecaade.2011.203
wos WOS:000335665500023
summary Collaborative virtual environments clearly have potentials to enable innovative and effective education, involving debate, simulation, role play discussion and brain storming and project based group work etc. Integration of the collaborative virtual environments into the design curricula offers significant potentials for design schools. In this paper, based on our previous teaching in collaborative virtual environments, the student’s perceptions and evaluations of the courses, we discuss the pedagogy of design teaching in collaborative virtual environments, considering what skills the new generation of designers should have in terms of collaboration, communication and design.
keywords Collaborative virtual environments; collaborative design; design studio; communication modes; design representation
series eCAADe
email
last changed 2022/05/01 23:21

_id architectural_intelligence2023_11
id architectural_intelligence2023_11
authors Hua Chai & Philip F. Yuan
year 2023
title Hybrid intelligence
source Architectural Intelligence Journal
doi https://doi.org/https://doi.org/10.1007/s44223-023-00029-w
summary Alongside shifts in the technological landscape, the origin of creativity in architectural design has been consistently evolving. According to French philosopher Bernard Stiegler, the architectural design process is never individualistic but rather shaped by the complex interaction between human creativity and what he terms the “pre-individual milieu”, the synthesis of various factors such as cultural heritage, technological innovation (Stiegler, 2016). Over the last three decades, the emergence of digital technologies such as the Internet of Things, virtual reality, and artificial intelligence has significantly enhanced the dynamism and diversity of human–machine communication. With the advancement of digital technologies in the field of architecture, artificial intelligence, machine intelligence, and material intelligence are increasingly integrated into the creative process. In the form of hybrid intelligence, this shift expands the scope of architectural creativity and creative agency beyond the mere intelligent landscape of the human mind. As suggested by architectural theorist Antoine Picon, “another possibility is to consider the pairing of man and machine as a new composite subject……This proposition is suggested by various contemporary reflections on computer technologies and their anthropological dimension” (Picon, 2011).
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id ijac20109205
id ijac20109205
authors Hudson, Roly; Paul Shepherd, David Hines
year 2011
title Aviva Stadium: A case study in integrated parametric design
source International Journal of Architectural Computing vol. 9 - no. 2, 187-204
summary The nature of large complex buildings requires specialized skills across a multi-disciplinary team and high levels of collaboration and communication. By taking a parametric approach to design and construction, high quality results can be delivered on budget on time. This type of approach facilitates the opportunity for design teams to work in an iterative manner.A parametric model reduces the time associated with complex design changes while providing a centralized method for coordinating communication. In this paper the recently completed Aviva Stadium is used to illustrate the ways in which these benefits manifest themselves on built work.The authors identify the moments in the design and construction process that truly justify the effort in implementing a parametric approach. By approaching design in this way a “design conversation” can take place between parties involved, resulting in a better building.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
wos WOS:000330322400039
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2011_033
id ecaade2011_033
authors Kligerman, Brad; Mehdaoui, Jamil
year 2011
title Building Fragile Places: Mixed Reality as an architectural platform
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.653-662
doi https://doi.org/10.52842/conf.ecaade.2011.653
wos WOS:000335665500076
summary This paper will explore the hypothesis that Mixed Reality is a differentiated media and credible framework for the generation, fabrication and communication of projects that are explicitly engaged in design research. This will be shown through a critical presentation of three built and unbuilt projects by Building w/immaterials in the domains of architecture, installation and education. These projects will demonstrate the creative and theoretical application of Mixed Reality from within the differentiated social system of Architecture. While the majority of research into Mixed Reality seems to concern its technical aspects, we will explore its application as a creative system for project development, realization and diffusion.
keywords Architecture; Mixed Reality; Innovation; Virtual Worlds; Media
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_245
id sigradi2011_245
authors Martin Iglesias, Rodrigo
year 2011
title Hacia un Nuevo Paradigma de Diseño Colaborativo [Towards a new paradigm of Collaborative Design]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 123-126
summary The constant discovery of new digital tools for design and representation confront us with new concepts, of- fering new theoretical perspectives on design practice. We must rethink the role of the designer and find tools to enable communication within projecting interdisciplinary teams. The future of design lies in collaboration and participation. In this paper we explore the idea of postdisciplinary design and sketch a operational theory of design based on the transposition, towards a new interfase for collaborative design that allows different ways of design and different strategies of use for each discipline involved.
keywords Design; Interdisciplinary; Collaborative; Interfase; Transposition
series SIGRADI
email
last changed 2016/03/10 09:55

_id cf2011_p110
id cf2011_p110
authors Mcmeel, Dermott
year 2011
title I think Therefore i-Phone: The influence of Pervasive Media on Collaboration and Multi-Disciplinary Group Work
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 69-84.
summary The study of value and its transfer during the multi-disciplinary process of design is stable fodder for research; an entire issue of Design Studies has been devoted to Values in the Design Process. By scrutinising design meetings Dantec (2009) and Ball (2009) separately examine the mechanisms of value transfer between the agents involved in design (clients, designers, engineers). Dantec suggests this is best understood in terms of requirement, values and narrative; Ball proposes it should be viewed as a combination of "analogical reasoning" and "environmental simulation". If we look at Vitruvius and his primary architectural manual (Pollio 1960) we find values‚Äîin the form of firmitas, utilitas and venustas‚Äîembedded in this early codification of architectural practice. However, as much current research is restricted to design practice what occurs when value frameworks move between domains of cultural activity (such as design to construction and vice-versa) is not privileged with a comparably sizable body of research. This paper is concerned with the ongoing usage of pervasive media and cellular phones within communications and value transfer across the disciplinary threshold of design and construction. Through participation in a building project we analyse the subtleties of interaction between analogue communication such as sketches and digitally sponsored communication such as e-mail and mobile phone usage. Analysing the communications between the designer and builder during construction suggests it is also a creative process and the distinctions between design and construction processes are complex and often blurred. This work provides an observational basis for understanding mobile computing as a dynamic ‚Äòtuning‚Äô device‚Äîas hypothesized by Richard Coyne (2010)‚Äîthat ameliorates the brittleness of communication between different disciplines. A follow up study deploys ‚Äòdigital fieldnotes‚Äô (dfn) a bespoke iPhone application designed to test further suppositions regarding the influence exerted upon group working by mobile computing. Within collaboration individual communiqu_©s have different levels of importance depending on the specific topic of discussion and the contributing participant. This project furthers the earlier study; expanding upon what mobile computing is and enabling us to infer how these emergent devices affect collaboration. Findings from these two investigations suggest that the synchronous and asynchronous clamour of analogue and digital tools that surround design and construction are not exclusively inefficiencies or disruptions to be expunged. Observational evidence suggests they may provide contingency and continue to have value attending to the relationship between static components‚Äîand the avoidance of failure‚Äîwithin a complex system such as design and construction.
keywords collaboration, design, mobile computing, digital media
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109306
id ijac20109306
authors Peng, Chengzhi
year 2011
title uCampus: Can an open source 3D interactive virtual campus modelling platform support institutional learning and innovation?
source International Journal of Architectural Computing vol. 9 - no. 3, 303-324
summary This paper reports and reflects on the key findings from the UK JISC funded weCAMP-uCampus project undertaken at the University of Sheffield in which a Web-based 3D interactive campus visualization modelling platform was developed and deployed using the latest Java and XML-based open source technologies. The project evolved rapidly along three strands of development on software design, content generation, and user/stakeholder engagement. One of the key outcomes is a novel approach to visualising large complex datasets in conjunction with multi-scale and multi-layered 3D campus modelling. To test the adaptability of uCampus, the Augustine House Experiment was later carried out in collaboration with the iBorrow project based at the Canterbury Christ Church University campus. The question on the prospect of uCampus to support learning and innovation at an institutional level is discussed by revisiting the earlier works of the Oregon Experiment and the Seeding-Reseeding Meta-Design Framework.
series journal
last changed 2019/05/24 09:55

_id fb59
id fb59
authors Schnabel, Marc Aurel; Chen, Rui Irene
year 2011
title Design Interaction via Multi-touch
source Computer Science Cooperative Design, Visualization, and Engineering, CDVE 2011, Y. Luo (Ed.): Lecture Notes in Computer Science, 2011, Volume 6874/2011, 14-21
summary We present a multi-touch-tabletop tool for design-collaborations and -communication tasks employing three-dimensional digitalized models. Our system allows users from various disciplines to communicate and share their ideas by manipulating the reference and their own input simultaneously by simply using intuitive gestures. Haptic and proprioceptive perception of tangible representations are perceived and understood more readily whereby our system provides an increased potential to compensate for the low spatial cognition of its users. Our integration of combining both model-based and participatory approaches with multi-touch tabletop system setups differs considerably from conventional visual representations for collaborative design. Since the multi-touch design interaction allows users to engage intuitively within virtual design environments, it is presenting a next generation of common graphical user interfaces.
keywords Multi-touch, collaboration, interaction, haptic, design
series book
type normal paper
email
more http://www.springerlink.com/content/y4k7w218359g257q/
last changed 2011/10/22 04:59

_id acadia11_326
id acadia11_326
authors Velikov, Kathy; Thün, Geoffrey; O’Malley, Mary; Ripley, Colin
year 2011
title Toward Responsive Atmospheres: Prototype Exploration through Material and Computational Systems
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 326-333
doi https://doi.org/10.52842/conf.acadia.2011.326
summary The Stratus Project is an ongoing body of design research investigating the potential for kinetic, sensing and environment-responsive interior envelope systems. The research emerges from a consideration of our attunement to the soft systems of architecture – light, thermal gradients, air quality and noise – paired with a desire to develop and prototype envelopes that not only perform to affect these atmospheres, but also to promote continual information and material exchange, and eventually dialogue, between occupant and atmosphere. Stratus v1.0 included the construction of a modest prototype using simple open source technologies, aimed to explore the formal, operational and technological possibilities, as well as potential operability and control conflicts, as part of the first phase of thinking around these questions. It deploys a distributed approach to structural, mechanical and communications systems design and delivery, where localized response is prioritized. The project works to reclaim the environmentally performative elements of architecture – in this case, specifically, interior mechanical delivery and interface systems – to within the purview of the discipline, as territories of material, formal, technological and experiential innovation and exploration. This paper will describe both the development of the current prototype as well as future research and investigation trajectories. The Stratus Project begins by situating itself at the crossroads of the disciplinary territories of architecture, technology, environmental control and cybernetics. Through the use of computational technologies and in collaboration with researchers in the fields of computer science, mechanical engineering and materials science, this project aims to advance the development of responsive environmental design and performative building skins.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac20109302
id ijac20109302
authors Williams, Nicholas; Hanno Stehling, Fabian Scheurer, Silvan Oesterle, Matthias Kohler, Fabio Gramazio
year 2011
title A Case Study of a Collaborative Digital Workflow in the Design and Production of Formwork for ‘Non-Standard’ Concrete Structures
source International Journal of Architectural Computing vol. 9 - no. 3, 223-240
summary This paper presents an overview of ongoing research from within the Tailorcrete research project into the development of CAD tools for the design and realization of ‘non-standard’ concrete structures. The focus is on concrete formwork, a significant factor affecting cost, logistics and aesthetics. With a process spanning a broad range of expertise, collaboration through an effective digital workflow is vital to the successful execution of such structures. As a concept for this workflow, a working model of a Design System is described and its development discussed. This focuses on three aspects: (1) the identification of key Use-Cases; (2) the definition of Formwork Systems; and (3) the definition of communication between software elements to provide relevant means of collaboration for expert users. An implementation as a package of software prototypes is also briefly presented. This includes a Base Framework, tools targeting Use-Cases and components relating to specific formwork systems.
series journal
last changed 2019/05/24 09:55

_id caadria2011_068
id caadria2011_068
authors Garagnani, Simone
year 2011
title Packing the “Chinese box”: A strategy to manage knowledge using architectural digital models
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 717-726
doi https://doi.org/10.52842/conf.caadria.2011.717
summary The architectural design activity has been transformed due to technological advances in building knowledge management. The research proposed is based on a three years long Ph.D. work on 3D models intended as graphical informative systems, layered according to the “Chinese box” paradigm and destined to professionals and researchers in architecture. The applied case study is referred to San Vitale’s church in Ravenna, Italy: the monument was investigated through nested digital models produced by different computer programs. Passing through evolutionary steps identified as synthesis, reduction and projection, the resulting archive lowered its Complication Ratio, a numerical value inspired by fractal’s auto-similarity, indicating a recursive modification in morphologies and contents. Models so conceived are qualified as progressive knowledge-based catalogues easily interchangeable and useful to understand how new or existing architectures work. As a result of this approach, representations obtained with surveys, historical chronicles, light analysis and acoustic simulations were composed following gradual refinements: technical data were collected running parallel to bibliographic research, enriching interactive virtual models sprung from a recursive criterion destined to increase the information enclosed into an undivided, lossless, digital archive.
keywords 3D modelling; virtual architecture; BIM; CAAD; information database
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_954111 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002