CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 98

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p049
id cf2011_p049
authors Hii Jun Chung, Daniel; Chye Kiang Heng, Lai Choo Malone Lee, Ji Zhang
year 2011
title Analyzing the Ventilation Performance of Tropical High Density Residential Precincts using Computational Fluid Dynamics
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 351-366.
summary Major cities in the world are getting bigger as they continue to grow to cater for more population increase. These cities normally forced the urban planning to go high density. In the tropical context, high density cities like Singapore and Hong Kong do not have the luxury of space to go low rise and compact. These cities have to build to the floor area ratio of 4 and above to cater for the population. Their only solution is to go up, as high as possible, to the extent that the natural wind flow pattern will be altered, which brings environmental impact to the people. This is generally not good since wind flow helps to maintain the thermal comfort of the people as heat and pollutants are being channeled out of the city to avoid Urban Heat Island effect. In the tropical context, wind flow is crucial to maintain people’s comfort as the temperature is generally very high from the exposure of the sun for the entire year. Studies have shown that wind flow plays the most significant part in maintaining human comfort despite exposing to direct sunlight in the tropics. Therefore, wind flow analysis is extremely crucial to make the design sustainable and energy efficient, as people will not have to depend on mechanical ventilation to compensate for the lack of wind flow. Computational Fluid Dynamics (CFD) has always been used in the field of architecture, urban design and urban planning to understand the patterns of wind flow through the built environment apart from wind tunnel tests. The availability of more powerful hardware for the mainstream computer users as well as the lowering costs of these computers made CFD more possible to be adopted in the design world today. This also means using CFD in the design process, especially to analyze the impact of the design to the current site conditions and annual wind patterns will help the new design to be more responsive to the site. The interest of this paper is to analyze the high density typologies to see how well they respond to the local wind flow pattern. A typology is considered acceptable when the wind flow going through the site is still maintaining acceptable wind speed. This means it does not block off the wind and create stagnant spaces. Different designs generate different typologies which will respond differently to the wind pattern. The study aims at comparing the local high density typologies in terms of their response to the wind. Changes to a typology can be explored too to see if the performance will be different. For a typology which is considered a total failure in terms of response to wind, it may improve its performance if the orientation is altered. The CFD software can also parametrically respond to the changes of the typologies’ dimensions. This is helpful to see how much more a typology can still be performing well before failure by increasing the floor area index. The easiest way to do this is to pump up the building height. In conclusion, designing in response to wind is extremely important as it is more sustainable and responsive to Urban Heat Island effect. A design which responds well to the wind patterns will help save cost of cooling load and fan expenditure. The people will also be more willing to use the outdoor spaces which will as a whole generate more vibrant city spaces. As a result, a high density city with huge population count can still enjoy good thermal comfort if the general urban planning and design respond well to wind.
keywords computational fluid dynamics, sustainability, high density, urban design, airflow, ventilation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia11_162
id acadia11_162
authors Payne, Andrew
year 2011
title A Five-axis Robotic Motion Controller for Designers
doi https://doi.org/10.52842/conf.acadia.2011.162
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 162-169
summary This paper proposes the use of a new set of software tools, called Firefly, paired with a low-cost five-axis robotic motion controller. This serves as a new means for customized tool path creation, realtime evaluation of parametric designs using forward kinematic robotic simulations, and direct output of the programming language (RAPID code) used to control ABB industrial robots. Firefly bridges the gap between Grasshopper, a visual programming editor that runs within the Rhinoceros 3D CAD application, and physical programmable microcontrollers like the Arduino; enabling realtime data flow between the digital and physical worlds. The custom-made robotic motion controller is a portable digitizing arm designed to have the same joint and axis configuration as the ABB-IRB 140 industrial robot, enabling direct conversion of the digitized information into robotic movements. Using this tangible controller and the underlying parametric interface, this paper presents an improved workflow which directly addresses the shortfalls of multifunctional robots and enables wider adoption of the tools by architects and designers.
keywords robotics; CAD/CAM; firefly; direct fabrication; digitizing arm
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2011_086
id ecaade2011_086
authors Lassance, Guilherme; Libert, Cédric; Lassance, Patricia Figueira; Feghali, Maria Elisa
year 2011
title The sensitive tower: Architectural and urban design education faced with fragile metropolitan ecologies
doi https://doi.org/10.52842/conf.ecaade.2011.581
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.581-588
summary Neighborhoods that are still outside the market target can find alternative ways of re-development. Therefore, it is necessary to design architectures compatible with their fragile ecologies. This research benefits from a previous study where we tried to observe the evolution of the uses of buildings and ways of living faced with changes in environmental conditions in a given urban context. Increased automobile traffic has led to changes in the use of residential spaces whose function was gradually replaced by commercial activities. Making use of graphic-oriented interpretation of urban ambiance and landscape analysis methodology applied to the design of different floor levels, this paper aims to introduce the concept of sensitive tower defined on the basis of observations made in our post-occupancy survey as a teaching strategy for the design studio faced with the current challenges of the contemporary metropolis.
wos WOS:000335665500067
keywords Design process; design education; contemporary metropolis; urban environment
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_042
id caadria2011_042
authors Lee, Seongki and Ludger Hovestadt
year 2011
title Complex adaptive residential quarter planning using multiobjective optimization: An agent-based modeling approach
doi https://doi.org/10.52842/conf.caadria.2011.443
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 443-452
summary This paper presents a complex adaptive residential quarter planning software. It is developed using Java object oriented programming language and targeting at configuring the tower-type apartment in a dense area during early design stage. Rules are analyzed and formulated based on building code and zone ordinance. Moreover we develop an agent-based modeling with multi-objective optimization algorithm. In this modeling, each agent acts independently according to the rules that are designed to solve the complex geometric problems that are related to physical constraints. At the end, we present a simulation outcome of a case study.
keywords MOOP; Urban design; residential quarter planning; agent system
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2011_068
id ecaade2011_068
authors Ma, Jin Yul; Choo, Seung Yeon; Seo, Ji Hyo; Jeong, Seung Woo
year 2011
title A Study on BIM based Energy Efficient Design Improvement for Rural Standard Drawing and Specification in South Korea: Focusing on Using Buffer-Zone
doi https://doi.org/10.52842/conf.ecaade.2011.430
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.430-438
summary Throughout the world, global warming has been considered a severe problem, which has led to efforts being made for technical development to reduce greenhouse gases in the building sector. As more attention has been paid to energy consumption by residential housing in the building sector, policies and studies on domestic dwellings tend to focus on quality improvement and energy-efficient housing development rather than quantitative housing supply. Yet, policies and guidelines considering residential energy efficiency are inclined to focus on performance and lack in integrated consideration in connection with design. Hence, it seems necessary to compare and analyze design and energy efficiency and to study correlations between housing design and energy. Lately, BIM technology has been used in buildings domestically and proved reliable in respect of its features that enable overall comparison and prediction of housing design, performance and efficiency. The present study is to use the BIM technology to analyze energy consumption and the standard drawing schemes for rural areas to find ways to improve efficient design in singles housing sector and to suggest how to take advantage of buffer zones and how to improve housing design in favor of energy efficiency.
wos WOS:000335665500049
keywords BIM; Energy Analysis Tool; Rural Standard Drawing; Buffer-Zone; Sustainable design
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id caadria2011_032
id caadria2011_032
authors Barker, Tom; Nicole Gardner, M. Hank Haeusler and Martin Tomitsch
year 2011
title Last train to trancentral: From infrastructure to ‘info’structure: a case study of embedding digital technology into existing public transport infrastructures
doi https://doi.org/10.52842/conf.caadria.2011.335
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 335-344
summary The research presented in this paper is an investigation into how ubiquitous computing technologies can contribute to improving the quality of existing public transport environments through the integration of responsive technologies. The paper argues that given the significant challenges associated with transport infrastructure expansion including cost, disruption, energy use, and implementation periods augmenting existing transport environments offers alternate measures to manage demand and improve the user experience. The paper proposes improving transport environments by integrating smart, or responsive, digital information into the existing physical fabric in a coherent architectural and spatial context. This approach offers an opportunity to shift away from the static nature of public transport infrastructure to the dynamic notion of public transport ‘info’structure. The research uses an architecture graduate studio as a foundation to investigate the objectives. The contribution of this paper is an investigation of ways in which digital technologies and networked communications can transform and augment public transport infrastructure, allowing new forms of intelligent, adaptive, interactive and self-aware architecture to be developed.
keywords Urban Informatics; media facades; public transport; responsive technologies; smart environments
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2011_p083
id cf2011_p083
authors Calderon, Dominguez, Emmanuel Ruffo, Hirschberg Urs
year 2011
title Towards a Morphogenetic Control of Free-Form Surfaces for Designers
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 165-180.
summary The present paper discusses a novel computational design strategy for approximating architectural free form geometry with discrete planar elements by using morphogenetic patterns. We report on an ongoing research project [1], which is focused on the design of flat ornamental tessellations by using computational geometry for the discretization of curved forms rather than manufacturing curvy elements, which typically increase cost. The significance of our approach lies in the fact that it allows the designer to progressively embrace the constructive constraints and their esthetic potential already in the design stage and to follow them through to actual fabrication.
keywords morphogenetic geometry, design strategies, user-interactiveness, design control, flat tessellations, ornamental structure.
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p108
id cf2011_p108
authors Iordanova, Ivanka; Forgues Daniel, Chiocchio François
year 2011
title Creation of an Evolutive Conceptual Know-how Framework for Integrative Building Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 435-450.
summary Low productivity of the building sector today is attributed to the fragmentation of tasks, disciplines and responsibilities, as well as to the resistance to adopt integrative work processes and digital means. The increased complexity of architectural projects and the aroused social consciousness for sustainable environment calls for integrative design collaboration. Thus, there is need for a Conceptual Framework combining work processes, technological means and policy aspects. According to the literature, integrative multidisciplinary design is a strategy resulting in high performance buildings nurturing sustainable way of living (Reed et al. 2009, Krygiel & Nies 2008). Responding to the increased technological complexity of our built environment, as well as to the objective of meeting multiple criteria of quality, both necessitating multidisciplinary collaboration during design, Building Information Modeling (BIM) is seen as a powerful means for fostering quality, augmenting productivity and decreasing loss in construction. Based on recent research, we can propose that a sustainable building can be designed through an integrative design process (IDP) which is best supported by BIM. However, our ongoing research program and consultations with advanced practitioners underscore a number of limitations. For example, a large portion of the interviewed professionals and construction stakeholders do not necessarily see a link between sustainable building, integrative design process and BIM, while in our opinion, their joint use augments the power of each of these approaches taken separately. Thus, there is an urgent necessity for the definition of an IDP-BIM framework, which could guide the building industry to sustainable results and better productivity. This paper defines such a framework, whose theoretical background lays on studies in social learning (activity theory and situated action theories). These theories suggest that learning and knowledge generation occurs mainly within a social process defined as an activity. This corresponds to the context in which the IDP-BIM framework will be used, its final objective being the transformation of building design practices. The proposed IDP-BIM framework is based on previous research and developments. Thus, firstly, IDP process was well formalized in the Roadmap for the Integrated Design Process‚ (Reed et al.) which is widely used as a guideline for collaborative integrative design by innovating practices in USA and Canada. Secondly, the National Building Information Modeling Standard (NBIMS) of the USA is putting an enormous effort in creating a BIM standard, Succar (2008) recently proposed a conceptual framework for BIM, but BIM ontology is still under development (Gursel et al 2009). Thirdly, an iterative design process bound to gating reviews (inspired from software development processes) was found to be successful in the context of multidisciplinary design studios (reported in our previous papers). The feedback from this study allowed for modifications and adjustments included in the present proposal. The gating process assures the good quality of the project and its compliance to the client's requirements. The challenge of this research is to map the above mentioned approaches, processes and technologies into the design process, thus creating an integrated framework supporting and nurturing sustainable design. The IDP-BIM framework can be represented by a multidimensional matrix linked to a semantic network knowledge database: - the axes of the matrix being the project timeline, the design process actors and building stakeholders (architect, engineers, client, contractor, environmental biologist, etc.), or different aspects of building performance (environmental, functional, social, interior environment quality, cost, etc.); and - the knowledge database providing multiple layers of semantic support in terms of process, domain knowledge, technology and workflow at a given moment of the project and for a given actor or building aspect. The IDP-BIM framework is created as an evolutive digital environment for know-how and will have an established protocol for regular updates. The paper will firstly present the state of the art in IDP and BIM. Secondly, it will expose the methodology used for the definition of the Framework, followed by a description of its structure, contents and digital implementation. Then, some scenarios for the use of the Framework will be shown as validation.
keywords integrated design process, BIM, multidisciplinary design, conceptual framework
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.acadia.2011.114
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2011_229
id sigradi2011_229
authors Lochon Adrien; Faria Lopes, Pedro; Dias, Miguel
year 2011
title DigitalPinDirector: a digital pinscreen editor for images and realtime animation in low cost personal computers
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 261-264
summary This paper presents the main characteristics of the traditional Pinscreen, the way it works, its problems and results achieved. The first Digital Pinscreen system is presented, along with its main characteristics and limitations. The rest of the paper describes and presents the DigitalPinDirector: a system that enables a full and true creative access to the unique visual and animation characteristics of the Pinscreen.
keywords Pinscreen; Digital Pinscreen; Computer Animation; NPR; Chiaroscuro
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2011_170
id ecaade2011_170
authors Nardelli, Eduardo Sampaio; Vincent, Charles de Castro
year 2011
title Generative and parametric design in Brazilian social housing production
doi https://doi.org/10.52842/conf.ecaade.2011.093
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.93-98
summary This paper aims to present an on going research about the use of digital technology to improve the production of the Brazilian dwelling program so called “My Home, My life”, one of the majors current social housing programs in the world, which goal is to build about 1 million houses for low-income population located in areas of illegal occupation in Brazilian large urban centers where the high cost of the land and the specific characteristics of each area make unfeasible the use of the modernist paradigm, based on repetitive standards.
wos WOS:000335665500010
keywords Parametric design; generative architecture; housing program; digital fabrication; immersive environments
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_234
id sigradi2011_234
authors Nome, Carlos; Clayton, Mark J.; Aguiar, Marcela
year 2011
title BIM: configurações e desdobramentos para implementação prática e ensino de arquitetura [BIM: configurations and unfoldings for implementation in practice and architectural education]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 507-511
summary This paper reports on the initial findings of a long term case study. It focuses on the BIM implementation efforts for Brazilian public firms that are responsible for the design, construction and management of buildings, infrastructure and urban spaces. It was postulated that BIM implementation could bring to Brazilian public institutions benefits similar to the ones achieved in the US, yet at a different cost structure. Research follows a mixed methods approach using focus groups and quasi experiments. Results describe obstacles encountered, benefits realized, and process changes expected that result from Brazilian socio-cultural context applied to public institutions.
series SIGRADI
email
last changed 2016/03/10 09:56

_id ecaade2011_172
id ecaade2011_172
authors Okuda, Shinya; Ping, Chua Liang
year 2011
title Form Follows Performance: Structural Optimisation and the Cost-effectiveness of Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2011.837
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.837-842
summary The presented paper describes a series of studio-based research projects on structural optimisation and the cost-effectiveness of digital fabrication that aim to balance stress distribution across thick walls or a rib density of slabs. As a consequence of the structural optimisations, the results tend to be non-uniform shapes that are not ideal for cost-effective fabrication. This paper introduces a few simple models to balance structural optimisation and fabrication cost-effectiveness. It involves relatively simple structural simulations as the design inputs, and then converts the simulation results into various architectural forms using parametric 3D modelling tool (McNeel Rhinoceros v4, Grasshopper v0.8) before fabricating them using digital fabrication technologies. The major challenge of this study is how to translate simulation results into architectural components/overall building shapes and how to fabricate complex forms in a cost-effective manner.
wos WOS:000335665500096
keywords Digital Fabrication; Mass Customisation; Cost-effectiveness; Structural Optimization; Parametric
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_110
id ecaade2011_110
authors Pak, Burak; Verbeke, Johan
year 2011
title Usability as a Key Quality Characteristic for Developing CAAD Tools and Environments
doi https://doi.org/10.52842/conf.ecaade.2011.269
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.269-278
summary In this paper, we will stress the importance of usability as a key quality characteristic for the Computer Aided Architectural Design (CAAD) software prototypes. We claim that usability evaluation practices can assist the integration of human factors and the accommodation of local differences. These practices are not solely limited to interface tests, but they can also provide valuable information on the possible added values of CAAD software prototypes, increase the overall product quality and thus contribute to the sustainable development of the CAAD research field. In this context, we aim to initiate a constructive discussion on this topic by reviewing various usability frameworks and highlighting possible opportunities and challenges of applicable evaluation methods. Consequent to this discussion, we will elaborate on our recent findings relating to the reliability and effectiveness of particular evaluation methods applied to a web-based geographic virtual environment prototype. In conclusion, we will introduce a new “design usability” framework that is suitable for CAAD software development; which suggests a variety of design usability quality characteristics, cost-effective evaluation methods and possible influence factors in the evaluation process.
wos WOS:000335665500030
keywords Usability; Quality in Use; Evaluation; CAAD Software Development; Human Factors
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_260
id acadia11_260
authors Pak, Burak; Vrouwe, Ivo; Verbeke,Johan
year 2011
title Design and Development of Low-cost Portable Immersive Spaces
doi https://doi.org/10.52842/conf.acadia.2011.260
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 260-267
summary In this paper, we will explore the potentials of low-cost portable immersive environments that combine textile structures, gesture-based interfaces and multiple projections. Our aim is to develop affordable, easy to set up, portable and inviting immersive spaces that can serve as an interface between a web-based geographic virtual environment, experts and lay people. In this context, after the introduction, we will review a variety of methods, conceptual tools and materials related to textile tectonics and techniques which can be individually used or combined for the development and construction of portable immersive spaces. In the next section, we will discuss the opportunities and challenges of using a low-cost gesture-based interface (Kinect) to support “touchless” interactions. Consequently, we will present the design alternatives of low-cost portable immersive spaces that we have synthesized from our background studies. This will be followed by the observations and findings from our prototype development, implementation and preliminary testing processes. In conclusion, we will discuss our conclusions and recommendations regarding the future development of low-cost portable immersive spaces.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4HOMELOGIN (you are user _anon_484164 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002