CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 551

_id sigradi2011_083
id sigradi2011_083
authors Bertuzzi, Juan; Zreik, Khaldoun
year 2011
title Mixed Reality Games - Augmented Cultural Heritage
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 304-307
summary This paper aims at enhancing Cultural Heritage in several ways. Using Augmented Reality and Virtual Reality technologies, we seek to highlight the advantages of understanding and applying hyper worlds in cultural, sociological, psychological and educational fields. For this purpose, we suggest the inclusion of social serious games as the perfect link to a more productive and pleasant experience for users and a more accurate analysis of simulated cultural environments for researchers.
keywords Game; social; city; culture; heritage
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p018
id cf2011_p018
authors Sokmenoglu, Ahu; Cagdas Gulen, Sariyildiz Sevil
year 2011
title A Multi-dimensional Exploration of Urban Attributes by Data Mining
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 333-350.
summary The paper which is proposed here will introduce an ongoing research project aiming to research data mining as a methodology of knowledge discovery in urban feature analysis. To address the increasing multi-dimensional and relational complexity of urban environments requires a multidisciplinary approach to urban analysis. This research is an attempt to establish a link between knowledge discovery methodologies and automated urban feature analysis. Therefore, in the scope of this research we apply data mining methodologies for urban analysis. Data mining is defined as to extract important patterns and trends from raw data (Witten and Frank, 2005). When applied to discover relationships between urban attributes, data mining can constitute a methodology for the analysis of multi-dimensional relational complexity of urban environments (Gil, Montenegro, Beirao and Duarte, 2009) The theoretical motivation of the research is derived by the lack of explanatory urban knowledge which is an issue since 1970’s in the area of urban research. This situation is mostly associated with deductive methods of analysis. The analysis of urban system from the perspective of few interrelated factors, without considering the multi-dimensionality of the system in a deductive fashion was not been explanatory enough. (Jacobs, 1961, Lefebvre, 1970 Harvey, 1973) To address the multi-dimensional and relational complexity of urban environments requires the consideration of diverse spatial, social, economic, cultural, morphological, environmental, political etc. features of urban entities. The main claim is that, in urban analysis, there is a need to advance from traditional one dimensional (Marshall, 2004) description and classification of urban forms (e.g. Land-use maps, Density maps) to the consideration of the simultaneous multi-dimensionality of urban systems. For this purpose, this research proposes a methodology consisting of the application of data mining as a knowledge discovery method into a GIS based conceptual urban database built out of official real data of Beyoglu. Generally, the proposed methodology is a framework for representing and analyzing urban entities represented as objects with properties (attributes). It concerns the formulation of an urban entity’s database based on both available and non-available (constructed from available data) data, and then data mining of spatial and non-spatial attributes of the urban entities. Location or position is the primary reference basis for the data that is describing urban entities. Urban entities are; building floors, buildings, building blocks, streets, geographically defined districts and neighborhoods etc. Urban attributes are district properties of locations (such as land-use, land value, slope, view and so forth) that change from one location to another. Every basic urban entity is unique in terms of its attributes. All the available qualitative and quantitative attributes that is relavant (in the mind of the analyst) and appropriate for encoding, can be coded inside the computer representation of the basic urban entity. Our methodology is applied by using the real and official, the most complex, complete and up-to-dataset of Beyoglu (a historical neighborhood of Istanbul) that is provided by the Istanbul Metropolitan Municipality (IBB). Basically, in our research, data mining in the context of urban data is introduced as a computer based, data-driven, context-specific approach for supporting analysis of urban systems without relying on any existing theories. Data mining in the context of urban data; • Can help in the design process by providing site-specific insight through deeper understanding of urban data. • Can produce results that can assist architects and urban planners at design, policy and strategy levels. • Can constitute a robust scientific base for rule definition in urban simulation applications such as urban growth prediction systems, land-use simulation models etc. In the paper, firstly we will present the framework of our research with an emphasis on its theoretical background. Afterwards we will introduce our methodology in detail and finally we will present some of important results of data mining analysis processed in Rapid Miner open-source software. Specifically, our research define a general framework for knowledge discovery in urban feature analysis and enable the usage of GIS and data mining as complementary applications in urban feature analysis. Acknowledgments I would like to thank to Nuffic, the Netherlands Organization for International Cooperation in Higher Education, for funding of this research. I would like to thank Ceyhun Burak Akgul for his support in Data Mining and to H. Serdar Kaya for his support in GIS.
keywords urban feature analysis, data mining, urban database, urban complexity, GIS
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_023
id caadria2011_023
authors Champion, Erik M. and Andrew Dekker
year 2011
title Indirect biofed architecture: Strategies to best utilise biofeedback tools and interaction metaphors within digital architectural environment
doi https://doi.org/10.52842/conf.caadria.2011.241
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 241-250
summary This paper explains potential benefits of indirect biofeedback used within interactive virtual environments, and reflects on an earlier study that allowed for the dynamic modification of a virtual environment’s graphic shaders, music and artificial intelligence (of Non Playing Characters) based on the biofeedback of the player. It then examines both the potential and the issues in applying biofeedback (already effective for games) to digital architectural environments, and suggests potential uses such as personalization, object creation, atmospheric augmentation, filtering, and tracking.
keywords Virtual worlds; biofeedback; sensors; empathy theory
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_029
id acadiaregional2011_029
authors Bell, Brad; Kevin Patrick McClellan, Andrew Vrana
year 2011
title Reconfiguring Collaboration by Computational Means Tex-Fab: A new model for collaborative engagement
doi https://doi.org/10.52842/conf.acadia.2011.x.f7u
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary TEX-FAB is a non-profit organization founded between three universities in Texas with the primary function of connecting design professionals, academics, and manufactures interested in digital fabrication. The three co-directors established TEX-FAB as a collective action, one that attempts to combine divergent interests and capabilities, for the purpose of strengthening the regional discourse around digital fabrication and parametric design. The three primary avenues for accomplishing this goal are set out as Theoria (Lectures / Exhibitions), Poiesis (Workshops) and Praxis (Competition). We see this type of effort as a new paradigm focused on providing a network of affiliated digital fabrication resources, and a platform for education/ exchange on issues of parametric modeling. It is our position that TEX-FAB engages the new and growing awareness of a regional and global hybridization. We seek to leverage the burgeoning global knowledge base to produce a more specific and contextual dialogue within the region we operate, teach, and practice.
series ACADIA
last changed 2022/06/07 07:49

_id sigradi2011_359
id sigradi2011_359
authors Bessone, Miriam; Milone, Diego; Irsuta, Maximiliano
year 2011
title Relaciones sinestésicas entre la música y la forma visual: hacia una identificación automatizada a través de métodos computacionales [Synaesthetic relations between music and visual shapes: towards automated identification using computational methods]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 289-293
summary In this paper, relations between music and visual perception are investigated using statistical analisys of the entailment made amongst them by different subjects in several experimental situations designed for such purpose. The goal, is to discover a set of elements and management mechanisms that are common to both field, from wich it is posible to detect significant constants and discard atypical relations. Finally, we will seek to develop a series of mathematical models that may be implemented as software to analize music and synthesis of forms, and simulate human analisys of relations between them.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2011_049
id ecaade2011_049
authors Marques, Luis Quelhas; Duarte, José P.; Jorge, Joaquim
year 2011
title When form really follows function: Developing the prototype of a responsive exhibition pavilion
doi https://doi.org/10.52842/conf.ecaade.2011.619
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.619-627
summary The paper describes research developed with the aim of enquiring into the concepts of adaptability, transformation, and interactivity between the built space, its users and the surrounding environment to find appropriate responses to variations in spatial and functional needs, prompted by different uses and activities. After a look into the roots of kinetic architecture and a brief survey of the state of art, it presents the prototype of a responsive kinetic structure for a multi-purpose pavilion, concluding that by the integration of existing and emergent technologies, we now have the basic means to design and implement such structures.
wos WOS:000335665500072
keywords Architecture; kinetic; responsive; adaptability; interactivity
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p011
id cf2011_p011
authors Verdonck, Evelien; Lieve Weytjens, Verbeeck Griet, Froyen Hubert
year 2011
title Design Support Tools in Practice. The Architects' Perspective
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 769-784.
summary In recent years, a large number of design support tools (DSTs) have been developed to address the ever increasing complexity and fragmentation of the architectural design process. Despite the omnipresence and the wide variety of DSTs available to architects today, literature reveals that there is still a mismatch between existing tools and design practice. Further examination of this discrepancy might reveal possible strategies for the improvement of tools. Therefore, this study investigates the Flemish architectural practice directly through a large-scale survey including 629 architects (nearly 10% of the population). The survey was based on a practice-oriented conceptual framework, which was developed as a theoretical background for this study. First the nature of the design process was explored through extensive literature review. In addition to this, a study of tools and possible classifications was carried out. Although numerous studies are available that provide a possible classification, most focus on specific design aspects, for instance sustainability or user-centered design. However, there is no general outline of tools available that would be adequate for the purpose of this research. The DSTs included in this study range from sketches and checklists to 3D CAD and simulation software, in other words any instrument intended to support one or more aspects of the design process. The findings from both literature studies were synthesized in the conceptual framework. This framework presents the design process as a linear process, consisting of the conceptual design phase, the preliminary design phase, the building permission phase, and the construction phase. Six categories of tools were defined, according to the roles they play in the design process, namely knowledge-based, presentation, evaluation/analysis, structuring, modeling, and communication. A tool can belong to one or more categories. The mapping of these roles on the design process resulted in the final framework, which was then used as a base for the questionnaire. The survey aimed at gaining insight into the different DSTs and their corresponding roles, as well as the design phases in which they are used or most needed by Flemish architects in architectural practice. In addition to this, the survey contained questions about the influence of tools on design decision-making, and the specific characteristics and qualities the designers prefer for design support tools. A final part of the survey asked about general background information, such as the respondents’ age, size of architectural firm and types of projects usually undertaken. The results of the survey reveal that there are distinctly different needs for each of the roles defined, as well as a specific frequency of use within each design phase. Furthermore, the most popular tools often encompass multiple roles. Additionally, clear expectations for future tools are defined. Finally, the data collected show researchers and tool developers what kind of support designers need in the different stages of the design process, and may help them to develop DSTs accordingly, to maximize their usability and eventually contribute to decrease the gap between tools and practice.
keywords design tools, architectural design process, survey
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2011_035
id caadria2011_035
authors Roudavski, Stanislav and Sonya Parton
year 2011
title Architectural creativity in commercialised cyberspace
doi https://doi.org/10.52842/conf.caadria.2011.365
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 365-374
summary This paper is written for architectural researchers, practitioners and educators who explore the potentials of networked, location- aware, rich-media computing. Augmented and networked environments open new possibilities in urban and architectural design. At the same time, their adoption by the mainstream is underpinned – and constrained – by commercial motivations. To be able to counter the consumerist interpretation of inhabitable augmented environments, the field of architecture needs to foster a critical discussion of cyberspace. In turn, architectural education needs to provide students with the knowledge necessary to adopt cyberspace for creative purposes. The purpose of this paper is to invite further discussion and experimentation in this area.
keywords Cyberspace, context-aware computing, locative media, ubiquitous computing, architectural creativity
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2011_262
id sigradi2011_262
authors Santos Roça, Luciana; Tramontano, Marcelo
year 2011
title Hybrid environments: sonic interfaces in public spaces
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 317-319
summary Sonic interfaces modify sound environments thereby generating other listening states, in individual or collec- tive ways, and may also change the spatial environment perception. The purpose of this article is to discuss possibilities and limits brought about by merging audio and spatial environments in public spaces, perceived collectively, and define concepts for sound interventions. This article is a presentation of a study in progress, conducted at Nomads.usp. This research seeks to suggest different perceptions of public spaces via sonic interfaces, revisit sonic environment concepts and provide experiences and opportunities for intellectual estrangement by means of mediated listening.
keywords Architecture; Digital Media; Sound Environment; Public Spaces
series SIGRADI
email
last changed 2016/03/10 09:59

_id ecaade2011_125
id ecaade2011_125
authors Sarhan, Ahmed; Rutherford, Peter
year 2011
title Environmental Design eTutor: Utilizing Games Technology for Environmental Design Education
doi https://doi.org/10.52842/conf.ecaade.2011.699
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.699-708
summary The design paradigm has shifted from addressing geometric masses and social spaces to integrate a whole new set of variables and criteria evolving from the environmental aspect of the design. Architectural design is confronting a mounting challenge with the ever-growing complexity of design concepts and the increasing pressure to incorporate aspects of energy preservation and sustainability. Such challenge is clearly noted and sensed within the pedagogical realm. There are many calls to bridge the gap through assisting design students to assimilate environmental analysis data in their design and decision making process. This paper presents a framework for a proposed method and relating tools aiming to utilize games technology with multi-agent systems and data mining techniques to assist design students and untrained professionals in comprehending various aspects of environmental design, with guidelines to incorporate these aspects in their design iteration process.
wos WOS:000335665500081
keywords Environmental Design Education; Building Performance Simulation; Games Technology; Multi-Agent Systems; Data Mining
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2020_150
id ecaade2020_150
authors Stojanovski, Todor
year 2020
title Role-playing planning games as educational tool - Experiences of teaching with educational games in Sweden
doi https://doi.org/10.52842/conf.ecaade.2020.1.525
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 525-534
summary Teaching about cities and planning involves complexities of understanding urban development in space and time, evolution and transformation of cities, urban politics, actors and stakeholders. Delivering efficient ways of teaching, is very important for educators, particularly among lecturers at universities who work with urban planning and design. Games can be used as educational tools and role-playing games can capture the political struggle of different actors and stakeholders involved in planning processes. Games can enable students to experience urban development and take roles of different actors and stakeholders in the planning and development processes and practice the art of negotiations in urban politics. Two educational games were written for the planning courses at KTH Royal Institute of Technology, Sweden. Since 2011, 17 games were played in different courses. Data from the evaluation forms was collected on 14 games and 277 students answered questions. This paper analyses the evaluation forms and the comments of the students who took part in the games and discusses gaming as an educational tool. The experiences with role-playing planning games are very positive. These ratings occurs consistently in each game that was played with very small variations.
keywords urban planning; urban design; role-playing games; education tool; teaching; gaming
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia11_106
id acadia11_106
authors Parsons, Ronnie; Akos, Gil
year 2011
title Form Force Matter: Investigating form-active systems through analog machines and physics-based simulation
doi https://doi.org/10.52842/conf.acadia.2011.106
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 106-109
summary Form-active Systems offer an intuitive means of gaining direct and tangible knowledge for addressing architectural design problems with degrees of complexity typically beyond our capacity or desire to engage as designers. With these systems as a mechanism for research, we may establish a rich territory in which form, force, and matter are inherently imbricated in their conceptual domain. Furthermore, if we approach this conceptual terrain with an understanding that the elements of these systems exist along a continuum between the real and the virtual, we may incorporate methods and techniques in the form of analog machines and physics-based simulation from architecture’s peripheral fields of structural engineering, physics, and computation. This paper presents an applied research framework undertaken in a continued sequence of seminars whereby Form-active Systems are analyzed for their performative characteristics, synthesized for operative design strategies, iteratively prototyped across scales, and redeployed within the context of a multi-story installation.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
doi https://doi.org/10.52842/conf.acadia.2011.082
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1359
id sigradi2018_1359
authors Bertola Duarte, Rovenir; Ziger Dalgallo, Ayla; Consalter Diniz, Maria Luisa; Romão Magoga, Thais
year 2018
title A window to the autism: the political role of the difference of an objectile in the homogeneous school
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 848-853
summary This paper approaches the insertion of an objectile in the homogeneous space of a school, looking to bring flexibility and responsiveness to assist a user with Autism Spectrum Disorder (ASD). The research concerns with photosensitivity, a problem faced by almost 25% of the children with autism (Miller-Horn; Spence; Takeoka, 2011). The study is based on the theories for ASD environments that speak of ‘sensorial perception’ and ‘thinking with imagery’ (Mostafa, 2008), and the coexistence of Sensory Design Theory and Neuro-Typical Method (Pomana, 2015). The result consists of a gadget developed in MIT App Inventor tool and a curtain that interact responsively through an Arduino code, for a new connection between the user and his surroundings.
keywords Objectile; Responsive Architecture; Architecture and autism; ASD; Inclusive school
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_880793 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002