CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 550

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2023_108
id sigradi2023_108
authors Passos, Aderson, Jorge, Luna, Cavalcante, Ana, Sampaio, Hugo, Moreira, Eugenio and Cardoso, Daniel
year 2023
title Urban Morphology and Solar Incidence in Public Spaces - an Exploratory Correlation Analysis Through a CIM System
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1655–1666
summary The walkability of open spaces has been highlighted in current discussions about the production of designed environments in urban contexts (Matan, 2011). To contribute to this theme, this work selects the environmental comfort of open spaces as its element of study. The production of urban space was investigated, specifically in regard to urban morphology, understanding that city design directly influences environmental comfort (Jacobs, 1996). This work addresses the geographic context of low latitudes, specifically in hot and humid climate zones of Brazil, and, in this context, according to NBR 15220 (national performance standards), shading is one of the main comfort strategies, so solar incidence was the approached environmental phenomenon. Thus, this work presents a digital system that performs exploratory analysis on the correlations between urban form indicators and environmental performance indicators, specifically solar incidence. The method consists of three steps: urban form modeling (1), indicator measurement (2) and correlation analysis (3). In the first stage, different spatial sections of a city in Brazil were represented in the digital environment (1). This work’s implementation instrument is based on a City Information Modeling framework (Beirao et al., 2012). Visual Programming Interface (VPI) and Geographic Information Systems (GIS) tools were used, in addition to a Relational Database Management System (RDBMS). Then, for each urban clipping, the values of morphological indicators and the incidence of solar radiation were measured (2). Based on the values of the indicators, an exploration of their correlation was carried out by statistical methods (3). The results of the correlation analysis and their correspondent scatter plots are presented. Finally, possible applications of the results for the creation of prescriptive urban planning systems are discussed, seeking to promote a sustainable urban environment.
keywords Urban planning, Environmental comfort, Walkability, Urban morphology, Statistical methods.
series SIGraDi
email
last changed 2024/03/08 14:09

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id cf2011_p116
id cf2011_p116
authors Stavric, Milena; Wiltsche Albert
year 2011
title Ornamental Plate Shell Structures
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 817-832.
summary The development of digital technologies in the last twenty years has led to an unprecedented formal freedom in design and in the representation in virtual space. Combining non-standard geometry with CAD tools enables a new way of expression and realization of architectural ideas and conceptions. The transformation of a virtual double-curved surface into a buildable physical structure and object is always accompanied by huge costs and big problems like geometric and statical ones. Our structure is a type of shell structure consisting of plane panels. The load bearing system is organized in a way so that the forces are distributed along the edges of the plane elements. A structure with plane elements supports a high stiffness in combination with a relatively small overall weight. This is due to smooth curved shape of the geometry. We show geometric methods how to control the construction of curved surfaces out of planar building elements. The approach is based on the discretization of the surfaces by plane elements derived from tangent planes. The novel process in this work is that we take the surface curvature at local points into account. This solves former problems which occurred when intersecting the planes. The fact that there is an infinite number of possibilities when selecting tangent planes on a surface raises the issue of the way and conditions which make it possible to select specific tangent planes whose intersection would produce a desired three-dimensional shape. In order to satisfy also aesthetical requirements we engage plane geometrical patterns and ornaments and transfer them into spatial shape. So a three-dimensional ornamental shape is deduced from a two-dimensional ornament. Another task which will be showed is how to limit the infinite range of possibilities to generate a preferred spatial ornament and on what conditions surface tessellation would be ornamental in character, i.e. it would generate not only the functional, but also the aesthetic component of a free-form surface.
keywords ornament, discretization, free-form surfaces
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_068
id sigradi2011_068
authors Gomez Zamora, Paula
year 2011
title NonGeometric Information Visualization in BIM. An Approach to Improve Project Team Communication
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 22-26
summary Building design and construction processes use geometrical models as well as other documentation for com- municating information during all phases of a project. Currently, an important amount of information included into the documentation is not linked to the 3D model, such as emails or decision-making updates. A huge challenge is an accurate and effective management of this non-geometrical information to improve team communication. This paper proposes the uses of Information Visualization techniques for managing these data visually, enhancing human understanding and interpretation. This research area is situated in the intersection of three areas of computing
keywords Building Information Modeling (BIM); non-geometrical information; information visualization; team project communication
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p081
id cf2011_p081
authors Shadkhou, Shaghayegh; Bignon Jean Claude
year 2011
title Cooperative Design to Construction: A sharable Model for Non-Standard Timber Construction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 603-618.
summary Abstract Architectural design is confronted to a renewal of formal vocabulary regarding the advancements on computational techniques. Non-standard architecture demands a hybrid approach regarding design and construction. It revives common borders between architectural and technical design. However, the respective digital assistance is confronted to discontinuity. This paper reports on part of a research activity aiming at elaborating a sharable model which by integrating construction knowledge assists the emergence of constructible geometry for timber construction.
keywords digital design, CAD/CAM chain, parametric modeling, timber construction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p011
id cf2011_p011
authors Verdonck, Evelien; Lieve Weytjens, Verbeeck Griet, Froyen Hubert
year 2011
title Design Support Tools in Practice. The Architects' Perspective
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 769-784.
summary In recent years, a large number of design support tools (DSTs) have been developed to address the ever increasing complexity and fragmentation of the architectural design process. Despite the omnipresence and the wide variety of DSTs available to architects today, literature reveals that there is still a mismatch between existing tools and design practice. Further examination of this discrepancy might reveal possible strategies for the improvement of tools. Therefore, this study investigates the Flemish architectural practice directly through a large-scale survey including 629 architects (nearly 10% of the population). The survey was based on a practice-oriented conceptual framework, which was developed as a theoretical background for this study. First the nature of the design process was explored through extensive literature review. In addition to this, a study of tools and possible classifications was carried out. Although numerous studies are available that provide a possible classification, most focus on specific design aspects, for instance sustainability or user-centered design. However, there is no general outline of tools available that would be adequate for the purpose of this research. The DSTs included in this study range from sketches and checklists to 3D CAD and simulation software, in other words any instrument intended to support one or more aspects of the design process. The findings from both literature studies were synthesized in the conceptual framework. This framework presents the design process as a linear process, consisting of the conceptual design phase, the preliminary design phase, the building permission phase, and the construction phase. Six categories of tools were defined, according to the roles they play in the design process, namely knowledge-based, presentation, evaluation/analysis, structuring, modeling, and communication. A tool can belong to one or more categories. The mapping of these roles on the design process resulted in the final framework, which was then used as a base for the questionnaire. The survey aimed at gaining insight into the different DSTs and their corresponding roles, as well as the design phases in which they are used or most needed by Flemish architects in architectural practice. In addition to this, the survey contained questions about the influence of tools on design decision-making, and the specific characteristics and qualities the designers prefer for design support tools. A final part of the survey asked about general background information, such as the respondents’ age, size of architectural firm and types of projects usually undertaken. The results of the survey reveal that there are distinctly different needs for each of the roles defined, as well as a specific frequency of use within each design phase. Furthermore, the most popular tools often encompass multiple roles. Additionally, clear expectations for future tools are defined. Finally, the data collected show researchers and tool developers what kind of support designers need in the different stages of the design process, and may help them to develop DSTs accordingly, to maximize their usability and eventually contribute to decrease the gap between tools and practice.
keywords design tools, architectural design process, survey
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_117
id ecaade2011_117
authors Albayrak, Canan; Tunçer, Bige
year 2011
title Performative architecture as a guideline for transformation: Defense Line of Amsterdam
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.501-510
doi https://doi.org/10.52842/conf.ecaade.2011.501
wos WOS:000335665500058
summary Performance as an architectural design paradigm has been emerging during the recent years. We have developed an understanding that we formalized as a taxonomy for performative architecture that considers performance from three points of view: health, safety and security performance; functional and efficiency performance; and psychological, social, cultural, and esthetic performance. This paper focuses on a design project that explores these ideas as a performative architecture proposal. The project focuses on the architectural transformation of the Defense Line of Amsterdam, 41 forts, as a green belt. This transformation considers a holistic approach of defining a general method and guideline. We developed a series of parametric models for the definition and generation of designs. The first model computes an urbanization level for each fort. Consequently, models are developed in 4 stages: regional design, urban design, building design, and production of a scale model, and these are applied in an iterative manner to reach design outcomes for the project.
keywords Performative architecture; performance evaluation; taxonomy; parametric modeling
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
doi https://doi.org/10.52842/conf.ecaade.2011.751
wos WOS:000335665500087
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_000
id sigradi2011_000
authors Chiarella, Mauro; Tosello, Maria Elena (eds.)
year 2011
title Sigradi 2011: Augmented Culture
source Proceedings of the 15th Iberoamerican Congress of Digital Graphics Graphics / ISBN 13: 978-987-657-679-6] Argentina - Santa Fe 16-18 November 2011, 579 p.
summary “Augmented Culture” talks about a combination of interdependent social and technological meanings in a complex, multiple, interactive and interconnected context. It acknowledges that a new social and cultural paradigm is being developed as the old barriers of time, space and language are ruptured and transcended. In our knowledge-based civilization, we inhabit interconnected societies where new relational forms are configured. Additionally, cultural expressions have been qualitatively augmented starting from their integration with information and communication technologies, which have dramatically enhanced not only their creative and reflective processes, but also the realization and construction of cultural objects. In this sense, an “Augmented Culture” compels us to investigate the wide and complex spectrum of the variables that express the interdisciplinary, collective and participative constructions of our present age, so strongly related to visual culture, information culture and interface culture. Thus, we consider it necessary to concentrate, to expand, to spread and to share exploratory, descriptive or explanatory experiences and productions of such phenomena. The attempt is to define a multidimensional theoretical framework that while recognizing today’s state-of-the-art and tendencies, it provides us with a critical viewpoint.
series other
type normal paper
email
last changed 2011/12/30 18:05

_id d90e
id d90e
authors Christenson, Mike
year 2011
title On the architectural structure of photographic space
source Architectural Science Review 54.2, 93-100.
summary The ambiguous relationship between photography and architecture is one of constructed and re-constructed identity. As a specific exploration into this relationship, this paper considers the construct of point-of-vew/field-of-view maps (or POV/FOV maps), that is, diagrams which register photographers’ positions, fields of view, and directions of view corresponding to a set of photographs of an existing work of architecture. A POV/FOV map can be expected to differ according to whether the set of photographs under consideration is (a) sampled from a image-sharing site such as Flickr; (b) published in an academic monograph; or (c) published in the popular press. This paper tests the extent and significance of these differences through a comparative study of Mies van der Rohe’s Crown Hall and Rem Koolhaas’s McCormick Tribune Campus Center, both at the Illinois Institute of Technology in Chicago, USA. In both cases, POV/FOV maps are used to compare sets of professional or academic photographs to sets of touristic and popular-press ones. Reflecting the tenuous nature of architectural identity as constructed through photography, the comparison both confirms and denies assumptions concerning differences between professional and amateur approaches. The paper concludes with the speculation that tools like Google Street View are likely to further erode traditional distinctions between modes of identity-construction, in particular, those distinctions which a POV/MAP can register.
keywords Photography, visualization, Mies, Koolhaas, flickr, Google
series journal paper
type normal paper
email
more http://www.informaworld.com/smpp/content~content=a938203017~db=all~jumptype=rss
last changed 2011/07/04 18:12

_id ecaade2011_056
id ecaade2011_056
authors Czerkauer-Yamu, Claudia; Voigt, Andreas
year 2011
title Strategic Planning and Design with Space Syntax
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.125-133
doi https://doi.org/10.52842/conf.ecaade.2011.125
wos WOS:000335665500014
summary In strategic planning and design, planners can benefit a great deal from planning models and simulations (2D, 3D and 4D). Carrying out strategic planning and design with the support of (spatial) models can open up a bright spectrum of opportunities and insights that were not evident before. Planning models and simulations support an awareness-raising process. In this context, space syntax also fits in. In the following we will discuss the constraints and opportunities of space syntax and show how space syntax can add value to strategic planning and design (based on the Ljubljana masterplan) for a sustainable and sustaining built environment.
keywords Urban analysis; strategic planning and design; space syntax; spatial simulation and modelling
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
wos WOS:000330320600052
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2011_387
id sigradi2011_387
authors Fernandez, Monica Inés; Bonvecchi, Liliana
year 2011
title Realidad digital avanzada. Aproximación holística a la construcción del espacio urbano [Advanced digital reality. Holistic approach to the construction of the urban space]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 193-196
summary From the education in architecture, we noticed the need to promote theoretical and critical reflection to contribute effectively in the training of professionals to diagnose problems; to promote the creative use of technology; and design interfaces to mediate through networks and virtual-real-joint trans-actions. This work concerns the study of alternative architectural language, that emphasizing the ethical responsibility of architecture, contribute to the architectural and urban viability Planned activities involve the operation of technological equipment, and are aimed at Advanced Digital Reality, to lead the construction of models, human resources training and applications in specific contexts designed to promote social inclusion.
series SIGRADI
email
last changed 2016/03/10 09:51

_id caadria2011_040
id caadria2011_040
authors Hamadah, Qutaibah
year 2011
title The polymorphic diagram: On mediating spatial thinking in architecture design
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 419-428
doi https://doi.org/10.52842/conf.caadria.2011.419
summary This paper describes the polymorphic diagram, a conceptual building information modeling environment conceived to mediate spatial thinking during the conceptual design phase. In particular, the discussion is focused on how enabling multiple forms of representations can possibly support and improve architects’ cognitive capacity to reason about space configuration.
keywords Space configuration; conceptual design; diagrams
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_659457 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002