CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_226
id acadia11_226
authors Salim, Flora; Jaworski, Przemyslaw; Kaftan, Martin; Friedrich, Eva; Urquiza, Rafael; Oh, Suhee; Fihn, John; Galaso, Jose Luis; Roa, Rafael; Banke, Tore; Bak, Jakob; Kalvo, Raul; Di Leo, Stefan; Madeddu, Davide; Albuquerque, Joao; Gillespie, David; Østergaard, Jacob
year 2011
title Informing Architecture and Urban Modeling with Real-world Data on 3D Tangible Interfaces and Augmented Displays
doi https://doi.org/10.52842/conf.acadia.2011.226
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 226-233
summary The proliferation of online and digital data in our world yields unprecedented opportunities for connecting physical and digital parametric models with live data input and feedback. Tangible interfaces and augmented displays provide theatrical settings for designers to visualize real-world data and experience realtime feedback while manipulating physical and digital models on the table. This paper proposes a new approach to design workflow, where physical model and virtual model can be interconnected and informed in realtime by multiple analytical datasets and live data streams. Using 3D scanning, blob detection, and multi-touch techniques, multidimensional tangible interfaces and augmented displays presented in this paper demonstrate a powerful new approach for designing and interacting with physical models, materials, and environmental data.
series ACADIA
type normal paper
last changed 2022/06/07 07:56

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p069
id cf2011_p069
authors Zahedi, Mithra, Guité Manon; De Paoli Giovanni
year 2011
title Addressing User-Centeredness: Communicating Meaningfully Through Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 513-524.
summary This paper proposes a model for human-computer interface design, which is focused on a user-centered approach. The paper studies the complexity inherent in the design process when the aim is to consider all team members of a project as contributors to a human-centered approach. Designers know that they are dealing with “messy” situations; they understand the uniqueness of each project, the continuous change of user needs, and the rapid development of information technology. They also see the challenges when working with other disciplines at the conceptual level, in creating shared understanding regarding user-centeredness. In this context, how can designers create the conditions for diverse contributing collaborators to go beyond their individual knowledge and enrich their reflections in order to efficiently collaborate within a human-centered approach? This study proposes that in looking to increase the efficiency of interfaces, all stakeholders should consider the user in all phases of the design process especially when they deal with complex and multi-disciplinary situations. Conducting a project-grounded approach led to introducing a new theoretical model of design. The model, which is based on joint reflective practice and an interdisciplinary attitude supports and frames a collaborative human-computer interface design process.
keywords Theoretical model, User-centered design; HCI; Interdisciplinary; Project-grounded approach
series CAAD Futures
email
last changed 2012/02/11 19:21

_id fb59
id fb59
authors Schnabel, Marc Aurel; Chen, Rui Irene
year 2011
title Design Interaction via Multi-touch
source Computer Science Cooperative Design, Visualization, and Engineering, CDVE 2011, Y. Luo (Ed.): Lecture Notes in Computer Science, 2011, Volume 6874/2011, 14-21
summary We present a multi-touch-tabletop tool for design-collaborations and -communication tasks employing three-dimensional digitalized models. Our system allows users from various disciplines to communicate and share their ideas by manipulating the reference and their own input simultaneously by simply using intuitive gestures. Haptic and proprioceptive perception of tangible representations are perceived and understood more readily whereby our system provides an increased potential to compensate for the low spatial cognition of its users. Our integration of combining both model-based and participatory approaches with multi-touch tabletop system setups differs considerably from conventional visual representations for collaborative design. Since the multi-touch design interaction allows users to engage intuitively within virtual design environments, it is presenting a next generation of common graphical user interfaces.
keywords Multi-touch, collaboration, interaction, haptic, design
series book
type normal paper
email
more http://www.springerlink.com/content/y4k7w218359g257q/
last changed 2011/10/22 04:59

_id acadiaregional2011_031
id acadiaregional2011_031
authors Christenson, Mike
year 2011
title Parametric Variation Revealing Architectural Untranslatability
doi https://doi.org/10.52842/conf.acadia.2011.x.c8q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary This paper describes a recently concluded graduate seminar which tested how form-generative design tactics of algorithmic work could be productively brought to bear on the conceptual analysis of existing buildings. The seminar did not seek to optimize performance or aesthetic value but simply to query the mechanics and consequences of translation as an act. Seminar participants mined existing buildings as sources for parametric rule-sets which were subsequently applied to varying media fields (e. g., physical materials, text, and graphics). This application revealed that specific media resist certain kinds of translation. This peculiar resistance suggested that characteristics of architecture exist which might broadly be called untranslatable.
series ACADIA
last changed 2022/06/07 07:49

_id caadria2011_018
id caadria2011_018
authors Nguyen, Thi Lan Truc and Beng-Kiang Tan
year 2011
title Understanding and constructing shared spaces for supporting informal interaction at a distance
doi https://doi.org/10.52842/conf.caadria.2011.189
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 189-198
summary This paper discusses the support of informal interaction at a distance using shared space approach. From examining existing examples, we identified critical issues and suggested that a lack of sense of shared space might be the cause of these issues. In order to understand how sense of shared space is supported in these systems, this paper introduces a taxonomy of mediated shared space for informal interaction whose categories are classified based on the degree to which the sense of shared space is supported.
keywords Informal interaction; shared space; collaborative virtual environment
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia23_v1_110
id acadia23_v1_110
authors Scelsa, Jonathan; Sheward, Gregory; Birkeland, Jennifer; Liu, Jemma; Lin, Yun Jou
year 2023
title Centripetal Clay Printing : Six-Axis Prints for Habitat Column
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 110-115.
summary Gottfried Semper, in his 1851 text The Four Elements of Architecture, famously classifies architecture into four elemental parts: the hearth, the roof, the enclosure, and the mound, describing the role of the last three to be the “defenders of the hearth’s flame against the three hostile elements of nature (Semper 2011).” Modernity has witnessed the role of enclosure evolve to that of a sealed envelope, or one which meticulously separates the ‘natural environment,’ from the internally regulated environment as part of modern comfort. The post-modern advent of the rain-screen has further separated the layer of exteriorized cultural expression from the structuring envelope, removing the ornamental aspect of Semper’s enclosure, from the enclosing layer. This habit of casting the natural processes out of our building envelopes has resulted in the rapid depletion of space for biodiversity within our cities. Joyce Hwang in her essay “Living Among Pests,” has suggested that the needed reconnection of biodiversity with our urban buildings will force a re-examination of “facade articulation to take on more responsibilities. Ornament will become performative” (Hwang 2013).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2011_062
id caadria2011_062
authors Zhang, Wei and Yiping Wang
year 2011
title Architectural space information scale: A new way of understanding architectural space
doi https://doi.org/10.52842/conf.caadria.2011.653
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 653-662
summary This paper presents a proposal for digitalizing architectural space. For this aim, the analysis of space properties in terms of an information scale is suggested as a new way of understanding architectural space. Information scale in this paper is a new concept integrating the body scale, behaviour scale and time scale in traditional conceptions of space. Through the process of information transfer, forms, behaviour, history, design, experience, evaluation etc. in architectural space are integrated into a well-arranged and operational approach. BIM plus SIM (Space Information Model) thus constitutes an integral architectural information model.
keywords Space information property; space information scale; Space Information Model
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2011_017
id ecaade2011_017
authors Achten, Henri; Koszewski, Krzysztof; Martens, Bob
year 2011
title What happened after the “Hype” on Virtual Design Studios?: Some Considerations for a Roundtable Discussion
doi https://doi.org/10.52842/conf.ecaade.2011.023
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.23-32
summary The issue of collaborative design has been elaborated extensively within the framework of previous CAAD–conferences. Today, an appreciation for traditional attitudes and methods can be observed, but interestingly, a mixture of approaches is also noticeable (computational techniques used in low–tech fabrication environments, for example). This allows for a round–table survey of the current state–of–the–art focused on experiences related to distant learning in the architectural curriculum. To make VDS viable, not only are technological solutions necessary, but so are social (among people) and professional (ways of behavior) ones. In this round–table we aim to identify critical factors of success (or failure).
wos WOS:000335665500001
keywords Education; architectural curriculum; blended learning; collaborative design; VDS
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109104
id ijac20109104
authors Schoch, Martin; Chakguy Prakasvudhisarn, Apichat Praditsmanont
year 2011
title Building-Volume Designs with Optimal Life-Cycle Costs
source International Journal of Architectural Computing vol. 9 - no. 1, 55-76
summary This report provides a detailed overview of the building-volume optimization (BVO) model. It allows for insights into elements that comprise the BVO model, describes its setup as an optimization tool for design and tests its possibilities through exemplary runs. It includes the description of all life-cycle cost (LCC) members involved and explains the implemented optimization process approach. It also provides a perspective regarding the sensitivity and consequences of the BVO model. Serving as decision-support for designers the model qualifies as a practice-oriented application during the early design stage. Test results indicate that LCC considerations can significantly affect building-volume designs during this stage. Therefore, the introduction of cost objectives to the building-volume design represents a valuable approach. Enabling for their inclusion, design issues referring to estimated building performances, are capable of improvement before design finalization. Especially comparisons between initial and operational costs imply that, with increasing life-cycle periods, the impact of operational costs on shaping building-volume design is continuously growing.
series journal
last changed 2019/05/24 09:55

_id caadria2021_231
id caadria2021_231
authors Wong, Kwan Ki Calvin and van Ameijde, Jeroen
year 2021
title In-Between Spaces: Data-driven Analysis and Generative Design for Public Housing Estate Layouts
doi https://doi.org/10.52842/conf.caadria.2021.2.397
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 397-406
summary As Hong Kong constructs increasingly high-density, high-rise public housing estates to increase land use efficiency, public in-between spaces are more constrained, which impacts the quality of social relations, movements and daily practices of residents (Shelton et al. 2011; Tang et al. 2019). Current planning practices are focused on the achievement of quantitative performance measures, rather than qualitative design considerations that support residents experiences and community interaction. This paper presents a new methodology that combines urban analysis and generative design for the regeneration of social housing estates, based on the spatial and social qualities of their in-between spaces.
keywords Social Housing; Public Open Space; Generative Design; Urban Planning
series CAADRIA
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id cf2011_p092
id cf2011_p092
authors Bittermann, Michael S.
year 2011
title Sustainable Conceptual Building Design using a Cognitive System
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 297-314.
summary A cognitive system for conceptual building design is presented. It is based on an adaptive multi-objective evolutionary algorithm. The adaptive approach is novel and, in contrast with conventional multi-objective evolutionary algorithms, it explores the solution space effectively, while maintaining diversity among the solutions. The suitability of the approach for conceptual design of a multi-purpose building complex is demonstrated in an application. In the application, the goal of maximizing sustainability is treated by means of a model, which is established using neural computations. The approach is found to be suitable for treating the soft nature of the sustainability concept. Also, the capability of the approach to compare the performance of alternative solutions from an unbiased viewpoint, i.e. without committing a-priori to a relative importance among the performance aspects, is demonstrated.
keywords computational design, sustainable design, adaptive evolutionary algorithm, Pareto optimality, neural computation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_275770 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002