CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id acadia11_252
id acadia11_252
authors Schubert, Gerhard; Artinger, Eva; Petzold, Frank; Klinker, Gudrun
year 2011
title Tangible Tools for Architectural Design: Seamless Integration into the Architectural Workflow
doi https://doi.org/10.52842/conf.acadia.2011.252
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 252-259
summary The starting point for the “CDP” (Collaborative Design Platform) interdisciplinary teaching and research project is to examine how digital tools can be used to support architects in the early design stages. The CDP – Collaborative Design Platform – represents an interface between the familiar, tried and tested ways in which architects work with digital tools that support the design process. The focus of the project concept is to create a working environment that fits seamlessly into the design process. The aim is to close the gap between analogue ways of working and digital tools. Using a prototypical setup, we examine the use of the computer as a tool for supporting the design process.
series ACADIA
type work in progress
email
last changed 2022/06/07 07:57

_id acadia11_162
id acadia11_162
authors Payne, Andrew
year 2011
title A Five-axis Robotic Motion Controller for Designers
doi https://doi.org/10.52842/conf.acadia.2011.162
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 162-169
summary This paper proposes the use of a new set of software tools, called Firefly, paired with a low-cost five-axis robotic motion controller. This serves as a new means for customized tool path creation, realtime evaluation of parametric designs using forward kinematic robotic simulations, and direct output of the programming language (RAPID code) used to control ABB industrial robots. Firefly bridges the gap between Grasshopper, a visual programming editor that runs within the Rhinoceros 3D CAD application, and physical programmable microcontrollers like the Arduino; enabling realtime data flow between the digital and physical worlds. The custom-made robotic motion controller is a portable digitizing arm designed to have the same joint and axis configuration as the ABB-IRB 140 industrial robot, enabling direct conversion of the digitized information into robotic movements. Using this tangible controller and the underlying parametric interface, this paper presents an improved workflow which directly addresses the shortfalls of multifunctional robots and enables wider adoption of the tools by architects and designers.
keywords robotics; CAD/CAM; firefly; direct fabrication; digitizing arm
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_242
id acadia11_242
authors Braumann, Johannes; Brell-Cokcan, Sigrid
year 2011
title Parametric Robot Control: Integrated CAD/CAM for Architectural Design
doi https://doi.org/10.52842/conf.acadia.2011.242
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 242-251
summary Robots are gaining popularity in architecture. Snřhetta has recently purchased their own industrial robot, becoming one of the first architectural offices to adopt robot technology. As more and more architects are exposed to robotic fabrication, the need for easy interoperability, integration into architectural design tools and general accessibility will increase. Architects are discovering that industrial robots are much more than kinematic machines for stacking bricks, welding or milling - they are highly multifunctional and can be used for a huge variety of tasks. However, industry standard software does not provide easy solutions for allowing direct robot control right from CAAD (Computer Aided Architectural Design) systems. In this paper we will discuss existing methods of programming industrial robots, published architectural results (Gramazio and Kohler 2008) and the design of a new user interface that allows intuitive control of parametric designs and customized robotic mass production, by integrating CAM (Computer Aided Manufacturing) functions into CAAD.
keywords robot programming; parametric design; mass customization; grasshopper component design; fabrication; robot milling; digital architecture
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
doi https://doi.org/10.52842/conf.acadia.2011.318
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id acadia11_178
id acadia11_178
authors Hambleton, Daniel; Braund, Michael; Walsh, Chris
year 2011
title Dragonfly: An Ecological Approach to Digital Architectural Design
doi https://doi.org/10.52842/conf.acadia.2011.178
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 178-185
summary Dragonfly is a simulation engine that extends the scope of current human-space interaction tools by encoding the basic principles of ecological psychology into an interoperable, interactive, CAD environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id cf2011_p099
id cf2011_p099
authors Huang, Andy; Erhan Halil, Woodbury Robert, Nasirova Diliara, Kozlova Karine
year 2011
title Collaboration Workflow Simplified: Reduction of Device Overhead for Integrated Design Collaboration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 591-602.
summary Design collaboration relies on cognitive tools such as analog media and digital peripheral devices, and shows the characteristics of distributed cognition. It is a social and complex activity involving multiple agents communicating and using external cognitive tools to encode, decode, and share information in the process of collaborative task completion. The systems supporting this activity should meet the ’principle of least collaboration effort’ [4] that proposes that agents in collaboration minimize their effort in presentation and acceptance of information. Yet, current collaboration systems are dispersed mixed media that is often overloaded with representations and functionality, thus preventing seam- less information sharing. Designers are required to spend extra effort collecting information using peripheral devices and in system management when sharing information. The goal of this study is to understand these overheads in infor- mation collection and sharing using peripheral devices, and to provide designers with a supportive platform to enhance collaboration using both analog and digital media. In this paper, we first review available peripheral devices such as smart pens, digital cameras, and voice recorders, as well as existing collaboration sup- porting software systems for their benefits and deficiencies in collaboration. We then present ’DiNa’, a collaboration platform that is envisioned to improve pro- ductivity and reduce redundant work by integrating peripheral devices into the collaboration workflow. We demonstrate a possible workflow using this system through several scenarios where designers collaborate in performing a series of design tasks. We hope to bring attention to the importance least collaborative effort in designing systems to support real-world collaboration.
keywords Collaboration, Peripheral Devices, Knowledge Collection, Human Computer Interaction, Computer Aided Design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2012_046
id ecaade2012_046
authors Juvancic, Matevz ; Zupancic, Tadeja
year 2012
title Evaluation system for Content and Language Integrated Learning in Architecture Using Immersive Environments
doi https://doi.org/10.52842/conf.ecaade.2012.1.115
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 115-123
summary Based on the experience from EU project ARCHI21 (Hunter et al, 2011) and long-term commitment to research of architectural presentations and educational approaches to expert and non-expert public (i.e. Juvancic, Mullins & Zupancic, 2012), the paper aims to clarify the terms used in CLIL-architecture context, identify the variables that have, in practice so far, proven to infl uence the learning outcome and learning experience both in architectural and language sense, and systematize the findings into the useful system. The result can be envisioned as the potential ‘ladder of the CLIL & architecture integration‘. The system would be of help to anyone trying to integrate language learning at different stages of architectural education, pointing out the required fundamentals, predicting the possible learning outcomes or benchmarking them after the experience. The basic terms/variables divided into three major infl uencing groups - competence, work environment and course settings - are described first, proceeded with the scheme connecting them into the system and two actual examples ‘run’ through the matrix for illustrative purposes. The paper also looks specifi cally into the use of different immersive environments and digital communication tools for teaching the architecture/design–other language combination and adapts the system to this segment, while also briefly comments on learners and teachers responses to CLIL-architecture integration.
wos WOS:000330322400011
keywords Architecture; immersive environments; CLIL; evaluation; teaching; Archi21
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia11_278
id acadia11_278
authors Kobayashi, Yoshihiro
year 2011
title Irregular Vertex Editing and Pattern Design on Mesh
doi https://doi.org/10.52842/conf.acadia.2011.278
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 278-283
summary This paper introduces an innovative computational design tool used to edit architectural geometry by addressing the problem of irregular vertices. An irregular vertex is a special kind of vertex which is connected with fewer or greater less or more edges than regular vertices on a mesh object. Irregular vertices create problems with further surface rationalization, as well as structural analysis and constructability of the surface. Geometry created using other tools can also be remeshed upon import. Using the developed tool, the user is able to identify irregular vertices, interactively change the type, and then move or remove these irregular vertices. Additionally, a computational tool to make various design patterns on the mesh after the topology has been edited is also developed. The workflow is illustrated step by step in the pipeline. The advantages and disadvantages of editing mesh topology on architectural geometry design including the limitations are discussed at the end.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id eaea2009_schneider_petzold
id eaea2009_schneider_petzold
authors Schneider, Sven; Frank Petzold
year 2011
title Digital & Analogue – Seamlessly Integrating Freehand-Sketching in a Digital Design Environment
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 135-146
summary In last decade the computer has turned from a simple “drawing machine” into a broad “design medium”. Digital tools offer possibilities for simulation, analysis or research. Using these tools in addition to the creative process new synergies can arise in dialog with the computer. Nevertheless, this potential is currently not exhausted. Reasons for this dilemma originate to large parts from the complicatedness of the programs which prevent a creative usage with the arising possibilities the complex digital design brings along with. To guarantee a smooth dialog between the computer and the designer and between distributed working design teams, we are investigating in the conception of an ideal computer-based design environment (ICBDE). Therefore we developed a prototypical design platform, where we try to consider the peculiarities of the design process in an integrated “digital chain”. Core concept of this ideal-framework is the seamless coupling of digital design tools to permit a back-coupling work in a comprehensive design environment. In this context the paper outlines sketching as one part of this ICBDE. Freehand-sketching is still one of the most important design tools. It is used in all phases of the design process and helps to turn the invisible thoughts fast and intuitively into workable artifacts. In contrast to the precise virtual models, the vagueness of sketches helps the designer to remain flexible in his decision- making and to keep the orientation in complex design tasks.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id acadia11_380
id acadia11_380
authors Vermisso, Emmanouil
year 2011
title Cross-disciplinary Prototyping: Pedagogical Frameworks for Integrating Biological Analogies into Design Courses
doi https://doi.org/10.52842/conf.acadia.2011.380
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 380-389
summary The increasing use of digital tools within the architectural curriculum dictates a necessity for critically approaching technology beyond its perception as a ‘tool’, towards the creation of a ‘method’. This paper proposes the use of discrete components, such as biology, computation and fabrication to build theoretical frameworks which inform design ‘experiments’ inviting the participation of the end-user through incorporation of kinetic devices. This is discussed with reference to a recently designed course, making an attempt to assess its strengths and potential as they relate to integration.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ijac20109302
id ijac20109302
authors Williams, Nicholas; Hanno Stehling, Fabian Scheurer, Silvan Oesterle, Matthias Kohler, Fabio Gramazio
year 2011
title A Case Study of a Collaborative Digital Workflow in the Design and Production of Formwork for ‘Non-Standard’ Concrete Structures
source International Journal of Architectural Computing vol. 9 - no. 3, 223-240
summary This paper presents an overview of ongoing research from within the Tailorcrete research project into the development of CAD tools for the design and realization of ‘non-standard’ concrete structures. The focus is on concrete formwork, a significant factor affecting cost, logistics and aesthetics. With a process spanning a broad range of expertise, collaboration through an effective digital workflow is vital to the successful execution of such structures. As a concept for this workflow, a working model of a Design System is described and its development discussed. This focuses on three aspects: (1) the identification of key Use-Cases; (2) the definition of Formwork Systems; and (3) the definition of communication between software elements to provide relevant means of collaboration for expert users. An implementation as a package of software prototypes is also briefly presented. This includes a Base Framework, tools targeting Use-Cases and components relating to specific formwork systems.
series journal
last changed 2019/05/24 09:55

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id acadia11_90
id acadia11_90
authors Fure, Adam
year 2011
title Digital Materiallurgy: On the productive force of deep codes and vital matter
doi https://doi.org/10.52842/conf.acadia.2011.090
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 90-97
summary This paper expands the discourse surrounding digital forms of making by scrutinizing the role of materials within computation, ultimately proposing a speculative working model that charts new territory. The growing importance of materials within technological research makes this an appropriate time to consider the nuance of their role within it. Currently, material innovation is happening along two central tracks: the customized cutting, sculpting, and forming of conventional materials with Computer Numerically Controlled (CNC) fabrication equipment and the development of new materials through innovations in material science. Both tracks rely on a limited set of material protocols which enable process-based control and eliminate the intrusion of any unpredictable material variable. Although efficient, such an approach limits architecture’s ability to procure novel material engagements. A few designers are developing an alternative model where computational codes are coupled with eccentric materials to produce unusual results. Digital materiallurgy, as I have called it, is part technique and part attitude; it relies on intentionally ceding limited design control to unpredictable matter—thus capitalizing on matter’s innate ability to produce unexpected formal and material complexity. Digital materiallurgy identifies the intersection of computation and eccentric materiality as a departure point for architectural innovation. By purposefully inserting material heterogeneity and inconsistency into computational means and methods, this work pries apart the apparently seamless relationship between digital design and physical production. By blurring the distinction between physical material and digital form, this work offers an integrated aesthetic experience, one that fetishizes neither the virtual nor the vintage but fuses both into a richer, wilder present.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id acadia11_122
id acadia11_122
authors Pigram, David; McGee, Wes
year 2011
title Formation Embedded Design: A methodology for the integration of fabrication constraints into architectural design
doi https://doi.org/10.52842/conf.acadia.2011.122
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 122-131
summary This paper presents a methodology for the integration of fabrication constraints within the architectural design process through custom written algorithms for fabrication. The method enables the translation from three-dimensional geometry, or algorithmically produced data, into appropriately formatted machine codes for direct CNC fabrication within a single CAD modeling environment. This process is traditionally one-way with part files translated via dedicated machine programming software (CAM). By integrating the toolpath creation into the design package, with an open framework, the translation from part to machine code can be automated, parametrically driven by the generative algorithms or explicitly modeled by the user. This integrated approach opens the possibility for direct and instantaneous feedback between fabrication constraints and design intent. The potentials of the method are shown by discussing the computational workflow and process integration of a diverse set of fabrication techniques in conjunction with a KUKA 7-Axis Industrial Robot. Two-dimensional knife-cutting, large-scale additive fabrication (foam deposition), robot-mounted hot-wire cutting, and robot-assisted rod-bending are each briefly described. The productive value of this research is that it opens the possibility of a much stronger network of feedback relations between formational design processes and material and fabrication concerns.
keywords robotic fabrication; multi-axis; file-to-factory, open-source fabrication, parametric modeling, computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p067
id cf2011_p067
authors Hsiao, Chih-Pin; Johnson Brian
year 2011
title Combined Digital & Physical Modeling with Vision-Based Tangible User Interfaces: Opportunities and Challenges
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 785-800.
summary Designers in architectural studios, both in education and practice, have worked to integrate digital and physical media ever since they began to utilize digital tools in the design process. There are benefits of working in the digital domain as well as benefits of working physically; confronting, or seeming to confront, architects with a difficult choice. Emerging strategies for human-computer interaction such as tangible user interfaces and computer vision techniques present new possibilities for manipulating architectural designs. These technologies can help bridge between the digital and physical worlds. This paper discusses some of these technologies, analyzes several current design challenges and presents a prototype that illustrates ways in which a broader approach to human- computer interaction might resolve the problem. The ultimate goal of breaking down the boundary between the digital and physical design platforms is to create a unified domain of "continuous thought" for all design activities.
keywords Computer-aided Architectural Design, Tangible Interaction, Vision-Based Computing
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_106
id acadia11_106
authors Parsons, Ronnie; Akos, Gil
year 2011
title Form Force Matter: Investigating form-active systems through analog machines and physics-based simulation
doi https://doi.org/10.52842/conf.acadia.2011.106
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 106-109
summary Form-active Systems offer an intuitive means of gaining direct and tangible knowledge for addressing architectural design problems with degrees of complexity typically beyond our capacity or desire to engage as designers. With these systems as a mechanism for research, we may establish a rich territory in which form, force, and matter are inherently imbricated in their conceptual domain. Furthermore, if we approach this conceptual terrain with an understanding that the elements of these systems exist along a continuum between the real and the virtual, we may incorporate methods and techniques in the form of analog machines and physics-based simulation from architecture’s peripheral fields of structural engineering, physics, and computation. This paper presents an applied research framework undertaken in a continued sequence of seminars whereby Form-active Systems are analyzed for their performative characteristics, synthesized for operative design strategies, iteratively prototyped across scales, and redeployed within the context of a multi-story installation.
series ACADIA
type work in progress
email
last changed 2022/06/07 08:00

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_710916 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002