CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 563

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2016_046
id ascaad2016_046
authors Albarakat, Reem; Gehan Selim
year 2016
title Radicalism vs. Consistency - The Cyber Influence on Individuals’ Non-Routine Uses in the Heritage Public Spaces of Cairo
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 451-460
summary Since the emergence of the concept of user-generated content websites – Web 2.0, Internet communications have developed as a powerful personal and social phenomenon. Many Internet applications have become partially or entirely related to the concept of social network; and cyberspace has become a space about ‘us’ not ‘where’ we are. This paper investigates the theoretical grounds of the effect of cyber experience on changing the individuals’ uses of the public spaces, and sustaining this change through maintaining the ties and reciprocal influence between actions in physical and cyber spaces. It aims at examining the impact of cyber territories on the perception, definition and effectiveness of personal space within different circumstances; and its role in changing the uses of spaces where people used to act habitually. The personal space, here, will be represented as the core of both: change and consistency – the space of bridging the reciprocal effect of cyber and physical counterparts, which is transformed through the experience of physical events mediated into the cyberspace. The paper is part of a study which looks at the case of Tahrir Square during the Egyptian political movement in 2011. We will compare the activists’ actions and practices in the Square during different events of non-routine use of the square and its surroundings. The case study will show the level of consistency in the features of the produced personal space within different waves of the revolutionary actions for all that different circumstances, motivations and results.
series ASCAAD
email
last changed 2017/05/25 13:33

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p092
id cf2011_p092
authors Bittermann, Michael S.
year 2011
title Sustainable Conceptual Building Design using a Cognitive System
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 297-314.
summary A cognitive system for conceptual building design is presented. It is based on an adaptive multi-objective evolutionary algorithm. The adaptive approach is novel and, in contrast with conventional multi-objective evolutionary algorithms, it explores the solution space effectively, while maintaining diversity among the solutions. The suitability of the approach for conceptual design of a multi-purpose building complex is demonstrated in an application. In the application, the goal of maximizing sustainability is treated by means of a model, which is established using neural computations. The approach is found to be suitable for treating the soft nature of the sustainability concept. Also, the capability of the approach to compare the performance of alternative solutions from an unbiased viewpoint, i.e. without committing a-priori to a relative importance among the performance aspects, is demonstrated.
keywords computational design, sustainable design, adaptive evolutionary algorithm, Pareto optimality, neural computation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_169
id sigradi2011_169
authors Figueroa, María E.; Hernández, Silvia; Lanzone, Luciana; Resk, Alejandra; Verón, María José
year 2011
title DU, Dispositivo urbano. Serie: Avatares Urbanos de la Comunicación y de la Cultura [DU, Urban Device. Series: Urbans Avatars of the Comunications and of the Culture]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 347-350
summary An experience of design combined with transformables spaces with domotic technology was done, where teachers and students from the faculty of engineering and architecture take part. The device proposed is ductile, is a urban avatar. The concept makes reference to the spanish term synonymous; to vicissitude and change. The urban device, with multiple functions, has vanguard technology to answer to a new social and cultural paradigm. It is proposed mobile skins connected to a support structure and for the inside space, a glass box, answering to sustainable. Working with 3D allows rehearsing the possibility of movement.
series SIGRADI
email
last changed 2016/03/10 09:51

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_045
id caadria2011_045
authors Indraprastha, Aswin and Michihiko Shinozaki
year 2011
title Computational method for mapping quality of architectural space
doi https://doi.org/10.52842/conf.caadria.2011.473
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 473-482
summary The key aim of this paper is to develop a computational method for mapping architectural space used for visual openness analysis. We suggest that the result will offer possibilities for quantitative design analysis particularly on spatial quality influenced by architectural elements. The proposed method consists of two stages: determination of subdivided enclosed spaces and measuring quality using visual openness parameters on each subdivided enclosed space. We advise new approach to determine subdivided enclosed spaces on architectural plan by determining two factors: bounded space and circulation space. Computational procedures applied to analyse architectural plan and then determine map of subdivided enclosed space by analysing relationship of these two factors. The concept underlying this method is that architectural space is composed of subdivided enclosed spaces, which each of them have distinct physical properties and therefore become possible to develop mapping of evaluation regarding the quality of architectural space. Our finding on orthogonal architectural plan provides ranking index of subdivided enclosed spaces that could help for analysing spatial quality of architectural space.
keywords Architectural space; subdivided enclose space; quality mapping; computational method
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_086
id ecaade2011_086
authors Lassance, Guilherme; Libert, Cédric; Lassance, Patricia Figueira; Feghali, Maria Elisa
year 2011
title The sensitive tower: Architectural and urban design education faced with fragile metropolitan ecologies
doi https://doi.org/10.52842/conf.ecaade.2011.581
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.581-588
summary Neighborhoods that are still outside the market target can find alternative ways of re-development. Therefore, it is necessary to design architectures compatible with their fragile ecologies. This research benefits from a previous study where we tried to observe the evolution of the uses of buildings and ways of living faced with changes in environmental conditions in a given urban context. Increased automobile traffic has led to changes in the use of residential spaces whose function was gradually replaced by commercial activities. Making use of graphic-oriented interpretation of urban ambiance and landscape analysis methodology applied to the design of different floor levels, this paper aims to introduce the concept of sensitive tower defined on the basis of observations made in our post-occupancy survey as a teaching strategy for the design studio faced with the current challenges of the contemporary metropolis.
wos WOS:000335665500067
keywords Design process; design education; contemporary metropolis; urban environment
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_151
id ecaade2011_151
authors Lonsing, Werner
year 2011
title Virtual Spaces in Urban Landscapes: Locative Exhibitions on Mobile Devices
doi https://doi.org/10.52842/conf.ecaade.2011.615
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.615-618
summary A concept of POIs renders the physical space in urban landscape as subject, which is being explored with a wide spectrum of digital media functionality as virtual spaces, hereby becoming accessible. The usage of mobile devices for locative exhibition spaces and location-based gaming is a new method to present information bound to physical locations.
wos WOS:000335665500071
keywords Virtual Spaces; Urban Landscape; Locative Exhibition; Mobile Device; Interactive Maps;
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_068
id ecaade2011_068
authors Ma, Jin Yul; Choo, Seung Yeon; Seo, Ji Hyo; Jeong, Seung Woo
year 2011
title A Study on BIM based Energy Efficient Design Improvement for Rural Standard Drawing and Specification in South Korea: Focusing on Using Buffer-Zone
doi https://doi.org/10.52842/conf.ecaade.2011.430
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.430-438
summary Throughout the world, global warming has been considered a severe problem, which has led to efforts being made for technical development to reduce greenhouse gases in the building sector. As more attention has been paid to energy consumption by residential housing in the building sector, policies and studies on domestic dwellings tend to focus on quality improvement and energy-efficient housing development rather than quantitative housing supply. Yet, policies and guidelines considering residential energy efficiency are inclined to focus on performance and lack in integrated consideration in connection with design. Hence, it seems necessary to compare and analyze design and energy efficiency and to study correlations between housing design and energy. Lately, BIM technology has been used in buildings domestically and proved reliable in respect of its features that enable overall comparison and prediction of housing design, performance and efficiency. The present study is to use the BIM technology to analyze energy consumption and the standard drawing schemes for rural areas to find ways to improve efficient design in singles housing sector and to suggest how to take advantage of buffer zones and how to improve housing design in favor of energy efficiency.
wos WOS:000335665500049
keywords BIM; Energy Analysis Tool; Rural Standard Drawing; Buffer-Zone; Sustainable design
series eCAADe
email
last changed 2022/05/01 23:21

_id caadria2011_067
id caadria2011_067
authors Neisch, Paulina
year 2011
title Colour-code models: The concept of spatial network
doi https://doi.org/10.52842/conf.caadria.2011.707
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 707-716
summary The main goal for the architects or planners is to understand a perspective of the user. The foundation of the design process is to create buildings and environments, which will be both innovative and functional for all types of users, including adults and children. While planning the environments for children the particular aspects should be considered. The important questions are: What kind of contact does child have with the city, urban places and buildings? How does the child construct the picture of the city? What kind of urban or architectural spaces contributes to the relation that a child has with the environment? Most of the previous studies concentrating on creation of spaces for children have focused on the perspectives that have adults. According to CAADRIA 2010 paper, the objective of our study was to “learn about” (get to know the) children’s perception of everyday places. The main goal of the project was to define an appropriate tool for the design process. We identified three elements, which were considered to be the most important for child’s identification with environment: home, school, and the journey from home to school. For this purpose, children living in a residential community in Bangkok were surveyed. Contrariwise to the quantitative approach (Neisch, 2010), the concept of Colour – Code Models of space propose a qualitative development of this research – a graphic language which allow to understand the children’s spatial world, the novel way to analyze and present space, useful for educate architects and planners.
keywords Spatial network; perception and representation of environment; drawing processing; data analyses; design for children
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2011_p093
id cf2011_p093
authors Nguyen, Thi Lan Truc; Tan Beng Kiang
year 2011
title Understanding Shared Space for Informal Interaction among Geographically Distributed Teams
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 41-54.
summary In a design project, much creative work is done in teams, thus requires spaces for collaborative works such as conference rooms, project rooms and chill-out areas. These spaces are designed to provide an atmosphere conducive to discussion and communication ranging from formal meetings to informal communication. According to Kraut et al (E.Kraut et al., 1990), informal communication is an important factor for the success of collaboration and is defined as “conversations take place at the time, with the participants, and about the topics at hand. It often occurs spontaneously by chance and in face-to-face manner. As shown in many research, much of good and creative ideas originate from impromptu meeting rather than in a formal meeting (Grajewski, 1993, A.Isaacs et al., 1997). Therefore, the places for informal communication are taken into account in workplace design and scattered throughout the building in order to stimulate face-to-face interaction, especially serendipitous communication among different groups across disciplines such as engineering, technology, design and so forth. Nowadays, team members of a project are not confined to people working in one location but are spread widely with geographically distributed collaborations. Being separated by long physical distance, informal interaction by chance is impossible since people are not co-located. In order to maintain the benefit of informal interaction in collaborative works, research endeavor has developed a variety ways to shorten the physical distance and bring people together in one shared space. Technologies to support informal interaction at a distance include video-based technologies, virtual reality technologies, location-based technologies and ubiquitous technologies. These technologies facilitate people to stay aware of other’s availability in distributed environment and to socialize and interact in a multi-users virtual environment. Each type of applications supports informal interaction through the employed technology characteristics. One of the conditions for promoting frequent and impromptu face-to-face communication is being co-located in one space in which the spatial settings play as catalyst to increase the likelihood for frequent encounter. Therefore, this paper analyses the degree to which sense of shared space is supported by these technical approaches. This analysis helps to identify the trade-off features of each shared space technology and its current problems. A taxonomy of shared space is introduced based on three types of shared space technologies for supporting informal interaction. These types are named as shared physical environments, collaborative virtual environments and mixed reality environments and are ordered increasingly towards the reality of sense of shared space. Based on the problem learnt from other technical approaches and the nature of informal interaction, this paper proposes physical-virtual shared space for supporting intended and opportunistic informal interaction. The shared space will be created by augmenting a 3D collaborative virtual environment (CVE) with real world scene at the virtual world side; and blending the CVE scene to the physical settings at the real world side. Given this, the two spaces are merged into one global structure. With augmented view of the real world, geographically distributed co-workers who populate the 3D CVE are facilitated to encounter and interact with their real world counterparts in a meaningful and natural manner.
keywords shared space, collaborative virtual environment, informal interaction, intended interaction, opportunistic interaction
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_107
id ecaade2011_107
authors Peters, Brady; Tamke, Martin; Nielsen, Stig Anton; Andersen, Søren Vestbjerg; Haase, Mathias
year 2011
title Responsive Acoustic Surfaces: Computing Sonic Effects
doi https://doi.org/10.52842/conf.ecaade.2011.819
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.819-828
summary Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces.
wos WOS:000335665500094
keywords Architectural Acoustics; Performance-Driven Design; Parametric Design; Digital Fabrication
series eCAADe
email
last changed 2022/05/01 23:21

_id acadiaregional2011_019
id acadiaregional2011_019
authors Peters, Troy
year 2011
title Simulation by Design: A Parametric Design Tool for Zero Energy Buildings
doi https://doi.org/10.52842/conf.acadia.2011.x.q2q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary To address the shortcomings of integrating building simulation in architectural design and to make it more appealing to students, a simple interface to Energyplus was created. This interface models a simple rectangular building that is passively heated by direct gain and cooled by ventilation. A simple photovoltaic interface has also been added to supply fan energy. This tool has an OpenGL modeler for visualization and uses Energyplus for calculations. The interface will run a full year simulation and graph the results. The results are reported in a yearly graph that shows the outdoor and indoor temperature. The indoor temperature range is based on adaptive comfort level. The interface was tested and used in an introductory design studio in order to comply with the 2010 imperative. The students simulated a simple box and changed the buildings parameters until the building fell within the adaptive comfort zone for most of the year. The climate simulated was Chicago, IL. Using these parameters the students then designed the building. The resulting designs show that even though the students were restricted in parameters, such as window percentage, they were still able to creatively design unique buildings that use zero to negative net energy for heating and cooling in a climate such as Chicago.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p152
id cf2011_p152
authors Plume, Jim; Mitchell John
year 2011
title An Urban Information Framework to support Planning, Decision-Making & Urban Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 653-668.
summary This paper reports on a 2-year research project undertaken in collaboration with a state planning authority, a major city municipal council and a government-owned development organisation. The project has involved the design of an urban information model framework with the aim of supporting more informed urban planning by addressing the intersection where an individual building interfaces with its urban context. This adopted approach enables new techniques that better model the city and its processes in a transparent and accessible manner. The primary driver for this project was the challenge provided by the essential incompatibility between legacy GIS (geographic information system) datasets and BIM (building information model) representations of the built form. When dealing with urban scale information, GIS technologies use an overlay mapping metaphor linked to traditional relational database technologies to identify features or regions in the urban landscape and attach attribute data to those in order to permit analysis and informed assessment of the urban form. On the other hand, BIM technologies adopt an object-oriented approach to model the full three-dimensional characteristics of built forms in a way that captures both the geometric and physical attributes of the parts that make up a building, as well as the relationships between those parts and the spaces defined by the building fabric. The latter provides a far richer semantic structure to the data, while the former provides robust tools for a wide range of urban analyses. Both approaches are widely recognised as serving well the needs of their respective domains, but there is a widespread belief that we need to reconcile the two disparate approaches to modelling the real world. This project has sought to address that disjunction between modelling approaches. The UrbanIT project concentrated on two aspects of this issue: the development of a framework for managing information at the precinct and building level through the adoption of an object-oriented database technology that provides a platform for information management; and an exploration of ontology tools and how they can be adopted to facilitate semantic information queries across diverse data sources based on a common urban ontology. This paper is focussed on the first of those two agendas, examining the context of the work, the challenges addressed by the framework and the structure of our solution. A prototype implementation of the framework is illustrated through an urban precinct currently undergoing renewal and redevelopment, finishing with a discussion of future work that comes out of this project. Our approach to the implementation of the urban information model has been to propose extensions to ISO/PAS 16739, the international standard for modelling building information that is commonly known as IFC (Industry Foundation Classes). Our reason for adopting that approach is primarily our deep commitment to the adoption of open standards to facilitate the exchange of information across the built environment professions, but also because IFC is based on a robust object schema that can be used to construct a internet-accessible database able, theoretically, to handle the vast quantity of data needed to model urban-scale information. The database solution comes with well-established protocols for handling data security, integrity, versioning and transaction processing or querying. A central issue addressed through this work is concerned with level of detail. An urban information model permits a very precise and detailed representation of an urban precinct, while many planning analyses rely on simplified object representations. We will show that a key benefit of our approach is the ability to simultaneously maintain multiple representations of objects, making use of the concept of model view definitions to manage diverse analysis needs.
keywords urban information modelling, geographic information systems, city models, interoperability, urban planning, open standards
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_029
id caadria2011_029
authors Santo, Yasu; John H. Frazer and Robin Drogemuller
year 2011
title Active buildings: What can we do about buildings that simply stand still?
doi https://doi.org/10.52842/conf.caadria.2011.301
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 301-310
summary This paper presents background of our research and result of our pilot study to find methods for convincing building users to become active building participants. We speculate this is possible by allowing and motivating users to customise and manage their own built environments. The ultimate aim of this research is to develop open, flexible and adaptive systems that bring awareness to building users to the extent they recognise spaces are for them to change rather than accept spaces are fixed and they are the ones to adapt. We argue this is possible if the architectural hardware is designed to adapt to begin with and more importantly if there are appropriate user interfaces that are designed to work with the hardware. A series of simple prototypes were made to study possibilities through making, installing and experiencing them. Ideas discussed during making and experiencing of prototypes were evaluated to generate further ideas. This method was very useful to speculate unexplored and unknown issues with respect to developing user interfaces for active buildings.
keywords Interaction; interface; Building Information; participatory; adaptive
series CAADRIA
email
last changed 2022/06/07 07:56

_id eaea2009_schneider_petzold
id eaea2009_schneider_petzold
authors Schneider, Sven; Frank Petzold
year 2011
title Digital & Analogue – Seamlessly Integrating Freehand-Sketching in a Digital Design Environment
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 135-146
summary In last decade the computer has turned from a simple “drawing machine” into a broad “design medium”. Digital tools offer possibilities for simulation, analysis or research. Using these tools in addition to the creative process new synergies can arise in dialog with the computer. Nevertheless, this potential is currently not exhausted. Reasons for this dilemma originate to large parts from the complicatedness of the programs which prevent a creative usage with the arising possibilities the complex digital design brings along with. To guarantee a smooth dialog between the computer and the designer and between distributed working design teams, we are investigating in the conception of an ideal computer-based design environment (ICBDE). Therefore we developed a prototypical design platform, where we try to consider the peculiarities of the design process in an integrated “digital chain”. Core concept of this ideal-framework is the seamless coupling of digital design tools to permit a back-coupling work in a comprehensive design environment. In this context the paper outlines sketching as one part of this ICBDE. Freehand-sketching is still one of the most important design tools. It is used in all phases of the design process and helps to turn the invisible thoughts fast and intuitively into workable artifacts. In contrast to the precise virtual models, the vagueness of sketches helps the designer to remain flexible in his decision- making and to keep the orientation in complex design tasks.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id ecaade2014_092
id ecaade2014_092
authors Sherif Abdelmohsen
year 2014
title A BIM-based Framework for Assessing Architectural Competition Entries
doi https://doi.org/10.52842/conf.ecaade.2014.2.473
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 473-483
summary Architectural competitions have been traditionally used to select best design practices. The basis of assessment for competitions has typically involved non-technical concepts of quality, subjective and emotional appreciations of experiences, and inseparable accord of formal, functional, aesthetic and contextual values (Rönn, 2011), rather than clear-cut objective and precisely measured values as in the engineering domain (Nashed, 2005; Nelson, 2006). Criteria for judgment usually focus on design parti and clarity of concept, novelty of architectural approach, context compliance, spatial organization, functional adaptability, economical solutions, and design flexibility. The assessment process, although presumably comprehensive and involving multiple evaluation techniques and resources, may still overlook important technical issues that may be fundamentally significant to the exclusion or approval of a given entry. This paper introduces a framework for assessing architectural competition entries aided by concepts of building information modeling (BIM).
wos WOS:000361385100050
keywords Building information modeling; architectural competitions; design evaluation; best practices; rule checking
series eCAADe
email
last changed 2022/06/07 07:56

_id cf2011_p124
id cf2011_p124
authors Verdonck, Evelien; Froyen Hubert
year 2011
title Universal Design Patterns: Designing a Web-Based Tool with Architects
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 103-115.
summary The implementation of Universal Design in design practice requires a number of tools that provide support to designers throughout the design process. In recent years, several studies have been carried out, determining methods to help designers select appropriate design support tools (DSTs), looking for desired data representation characteristics, or focusing on involving a wide range of users in the design process. This paper discusses how architects, as end-users of the DST, are involved in the development process of a new web-based tool based on the Universal Design Patterns concept. The Universal Design Pattern concept was developed based on Christopher Alexander’s Pattern Language, and looks at the possibility of using patterns to describe existing barriers in the built environment (conflicts), as well as design characteristics that may be implemented to make new designs more inclusive (resolutions). Through Universal Design Patterns, users can contribute new insights about the existing built environment, while architects can discuss the inclusive qualities of new design solutions or find useful design guidance. Involving the architects in developing the Universal Design Pattern concept into a web-based design tool is essential to establish a structure for the Universal Design Patterns that is compatible with the designers’ way of thinking about design problems. Using the specific structure of Universal Design Patterns allows for the grouping of information into appropriately themed units on different levels of the design in a clear and uniform way. Building on the results of a survey involving 406 architects and a comparative study of existing DSTs for Universal Design, this paper first focuses on the results of a series of interviews that provided the basis for a first data-structure for the Universal Design Patterns tool. In addition to this, case-studies were carried out to ensure the new tool can easily be incorporated into the architects’ design process. The results from both the interviews and the case-studies were combined in a preliminary model for the web-based tool. Finally, the methodology for testing this model with architects is discussed. In conclusion, some thoughts are given on the potential benefits of not only testing new DSTs with designers, but involving them actively from the early stages; or, in other words, the benefits of tools not only designed for architects, but with them.
keywords Universal Design, Tools, Patterns
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_400894 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002