CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
doi https://doi.org/10.52842/conf.caadria.2011.091
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2011_290
id sigradi2011_290
authors Azevedo de Oliveira, Fabiana Mabel
year 2011
title Redes sociotécnicas: a concepção de uma interface [Sociotechnical network: design of an interface]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 568-570
summary This paper aims to examine the forms of representation of the processes of creation of Web interfaces for platforms. Its origin is associated with a proposal that understands the new communications technologies, specifically the Internet, and the possibility of formation of a sociotechnical network, as a tool to expand the ways of social interaction (Egler, 2007). Increasing access to information and communication, making the process more open, redefining the relationships and social exchanges, and allowing its mediation by digital processes.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id caadria2011_002
id caadria2011_002
authors Bernal, Marcelo
year 2011
title Analysis model for incremental precision along design stages
doi https://doi.org/10.52842/conf.caadria.2011.019
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 19-18
summary With current energy analysis tools, architects and engineers cannot rely on the results of energy analyses because they do not report their level of precision. In addition, current tools also do not deliver feedback in real time. Thus, this research addresses the challenge of obtaining feedback in real-time while gradually increasing precision along design stages. For this purpose, this study merges parametric modelling (PM) technologies and the performance-based design (PBD) paradigm into a general design model. The model is based on a parametric and an energy analysis model that share the parameters of a building. The modular architecture of the model involves four main function types: an input processor, optional analysis functions embedding different calculation methods, a decision-maker, and a report generator function. For every step of the design evolution, the decisionmaker function generates a specific tree of analysis functions.
keywords Performance; decision-making; extensibility; knowledgebased design; design automation
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_101
id ecaade2011_101
authors Colakoglu, Birgul
year 2011
title Introduction to Architecture Studio: Geometry, Rules and Patterns
doi https://doi.org/10.52842/conf.ecaade.2011.745
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.745-750
summary Introduction to architecture studio introduces students of architecture with fundamentals of design and design thinking. Here, the students learn: analytical thinking by constructive analysis of precedents; language of design by using basic geometric elements and operational/transformational principles among them; and principles of form making by engaging in constructing the form. The paper explains the process of the studio in which shape grammar methodology is utilized in teaching analytical thinking, language of design and principles of form making to architecture students.
wos WOS:000335665500086
keywords Architecture Studio Education: Shape Grammars: Rule Based Design
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_039
id ecaade2011_039
authors Da_lar, Özgür; Tong, Togan
year 2011
title A Method on Using Video in Architectural Design Process: Matchmoving
doi https://doi.org/10.52842/conf.ecaade.2011.339
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.339-348
summary Computer technologies are used frequently and effectively in film-making. It is almost inevitable to exclude computer aid in different phases of the process such as video editing, compositing and generation of visual effects. Therefore, techniques and software used in this field are improving every day. In this paper, potentials of a technique known in film making industry as matchmoving will be elaborated to be used in architectural design process. The types of software available for matchmoving purposes excel at generating 3D environment data from video shots, making them very useful tools for architects.
wos WOS:000335665500039
keywords Architectural analysis; digital environment generation; matchmoving; motiontracking
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_318
id acadia11_318
authors Doumpioti,Christina
year 2011
title Responsive and Autonomous Material Interfaces
doi https://doi.org/10.52842/conf.acadia.2011.318
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 318-325
summary This paper presents continuing research on responsive systems in architecture; the ability of architectural systems to change certain properties in response to their surrounding environmental pressures. While doing so, it shifts from current and past examples of mechanical approaches of adaptation, towards biological paradigms of seamless material integration. Looking at biological mechanisms of growth and focusing on the material make-up behind them, the research proposes the exploration of material systems in a two-fold interrelated manner: firstly, through passive material systems of variable elasticity, and secondly through the embedment of smart materials with shape-changing properties. The combination of the two is aiming at architectural systems of functional versatility.Through an interdisciplinary approach, the paper examines the following questions: Is it possible to envisage structures that share the principles of adaptation and response of living organisms? What are the technological challenges faced when designing self-actuated responsive interfaces? Which is the conceptual framework for understanding and investigating complex adaptive and responsive systems? By exploring and synthesizing theories and tools from material science, bioengineering and cybernetics the aim is to inform architectural interfaces able to enhance interconnectivity between the man-made and the natural. Focusing on the self-organization of material systems the intention is to suggest architectural interventions, which become sub-systems of their ecological milieu. The emphasis therefore is placed not on architectural formalism, but on how we can define synthetic environments through constant exchanges of energy, matter and information.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2011_p147
id cf2011_p147
authors Erbas, Irem; Bittermann Michael, Stouffs Rudi
year 2011
title Use of a Knowledge Model for Integrated Performance Evaluation for Housing (re)design Towards Environmental Sustainability: A Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 281-296.
summary This paper focuses on the development of a knowledge model in the context of energy efficiency and indoor climate interventions, their impacts on each other and on architectural design preferences (for instance architectural expression or any spatial functionality aspect) via an existing house case study. In addition, it attempts to discuss how this type of model can be a reference for a decision support tool and be applied to the (re)design of dwellings. The model is considered to provide an integral knowledge base for the design professional both to evaluate existing designs and to use it as a support during design and decision making in order to reach the best possible solution, with optimal performance in terms of indoor comfort, energy-efficiency and overall design performance. In other words, its aim is to enable the assessment of the performance of the end result with respect to design choices, beforehand. In this paper, design performance is modeled by means of fuzzy logic operations. It is a method to deal with subjective and vague requirements such as low energy consumption, low overheating risk, high comfort, etc. The method of intelligent information processing is explained and a partial application is presented.
keywords energy efficiency, indoor comfort, design decision support, knowledge modeling, performance evaluation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_077
id ecaade2011_077
authors Ettlinger, Or
year 2011
title The Perceptual, the Virtual, and the Real: On the experience of place in the digital age
doi https://doi.org/10.52842/conf.ecaade.2011.925
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.925-932
summary Since the dawn of philosophical thought man has questioned the validity of his experience of the world around him: Is the world just as we perceive it to be, or does its true essence lie beyond our reach? In our own time, technological, social, and economic developments have made such philosophical concerns more relevant to our everyday lives than ever before. However, the available terminology for discussing such matters is often too limited to fully capture their nature. This paper proposes a consistent terminology for the discussion of such matters and suggests a model of the different aspects from which they are comprised. This terminology will be applied to, as well as presented through, issues that are pertinent to architectural theory, to the experience of places, and to the intangible sense of place which digital phenomena can sometimes provide.
wos WOS:000335665500106
keywords Architectural theory; media theory; perceptual; virtual; real
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2013_104
id ecaade2013_104
authors Figueiredo, Bruno; Duarte, José Pinto and Krüger, Mário
year 2013
title Albertian Grammatical Transformations
doi https://doi.org/10.52842/conf.ecaade.2013.2.687
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 687-696
summary This paper presents a research on the use of shape grammars as an analytical tool in the history of architecture. It evolves within a broader project called Digital Alberti, whose goal is to determine the influence of De re aedificatoria treatise on Portuguese Renaissance architecture, making use of a computational framework (Krüger et al., 2011).Previous work was concerned with the development of a shape grammar for generating sacred buildings according to the rules textually described in the treatise. This work describes the transformation of the treatise grammar into another grammar that can also account for the generation of Alberti’s built work.
wos WOS:000340643600071
keywords Shape grammars; parametric modelling; generative design; Alberti; classical architecture.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia11_90
id acadia11_90
authors Fure, Adam
year 2011
title Digital Materiallurgy: On the productive force of deep codes and vital matter
doi https://doi.org/10.52842/conf.acadia.2011.090
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 90-97
summary This paper expands the discourse surrounding digital forms of making by scrutinizing the role of materials within computation, ultimately proposing a speculative working model that charts new territory. The growing importance of materials within technological research makes this an appropriate time to consider the nuance of their role within it. Currently, material innovation is happening along two central tracks: the customized cutting, sculpting, and forming of conventional materials with Computer Numerically Controlled (CNC) fabrication equipment and the development of new materials through innovations in material science. Both tracks rely on a limited set of material protocols which enable process-based control and eliminate the intrusion of any unpredictable material variable. Although efficient, such an approach limits architecture’s ability to procure novel material engagements. A few designers are developing an alternative model where computational codes are coupled with eccentric materials to produce unusual results. Digital materiallurgy, as I have called it, is part technique and part attitude; it relies on intentionally ceding limited design control to unpredictable matter—thus capitalizing on matter’s innate ability to produce unexpected formal and material complexity. Digital materiallurgy identifies the intersection of computation and eccentric materiality as a departure point for architectural innovation. By purposefully inserting material heterogeneity and inconsistency into computational means and methods, this work pries apart the apparently seamless relationship between digital design and physical production. By blurring the distinction between physical material and digital form, this work offers an integrated aesthetic experience, one that fetishizes neither the virtual nor the vintage but fuses both into a richer, wilder present.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id sigradi2011_193
id sigradi2011_193
authors Garagnani, Simone; Mingucci, Roberto
year 2011
title A.I.M. Informative Archives for architectural renovation
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 94-97
summary The information technology applied to the architectural surveys makes the environment documentation pos- sible through multimedia data, which can be processed using a "Multimedia Informative Archive" (A.I.M.), designed for Institutions interested in cultural heritage preservation. An A.I.M. system can manage analytical information embedded into digital databases, referencing a visual exploration path to several technical data, documenting the context in which a monument, or an historical building, is placed. The framework can be ported to mobile devices in order to allow a wide number of data gathering stations, connected to the same central archive, making easier browsing and storing architectural information.
keywords Digital 3D modeling; architectural information technology; virtual heritage documentation; multimedial building database; immersive data modeling
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2011_068
id sigradi2011_068
authors Gomez Zamora, Paula
year 2011
title NonGeometric Information Visualization in BIM. An Approach to Improve Project Team Communication
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 22-26
summary Building design and construction processes use geometrical models as well as other documentation for com- municating information during all phases of a project. Currently, an important amount of information included into the documentation is not linked to the 3D model, such as emails or decision-making updates. A huge challenge is an accurate and effective management of this non-geometrical information to improve team communication. This paper proposes the uses of Information Visualization techniques for managing these data visually, enhancing human understanding and interpretation. This research area is situated in the intersection of three areas of computing
keywords Building Information Modeling (BIM); non-geometrical information; information visualization; team project communication
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2011_271
id sigradi2011_271
authors Gonçalves, Marly de Menezes
year 2011
title O uso da realidade aumentada no espaço urbano [Augmented Reality use in Urban Area]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 512-515
summary New technologies have lead to significant changes in man's relationship with spaces, both real and virtual. In this regard, this article seeks to show how augmented reality use in urban areas may complement physical space perception, without spoiling cultural, historical, artistic and scenic city heritage.
keywords Augmented Reality; Visual Identity; Urban Space
series SIGRADI
email
last changed 2016/03/10 09:52

_id caadria2011_043
id caadria2011_043
authors Grace, Kazjon S.; Robert Saunders and John S. Gero
year 2011
title Applying interpretation-driven association to design domains
doi https://doi.org/10.52842/conf.caadria.2011.453
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 453-462
summary This paper presents a computational model of visual association- making. Our model focuses on the interaction between the processes of representation and matching in association. Re-interpretation of the objects being associated changes the landscape in which the matching process is searching for potential mappings between those objects. We call this process interpretation-driven search. We demonstrate the capabilities of our system through some examples of previous work in simple shape domains, then discuss ongoing research into applying this system to design domains.
keywords Visual association; interpretation; computational model; design cognition
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_369315 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002