CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id acadiaregional2011_016
id acadiaregional2011_016
authors Miller, Nathan
year 2011
title The Hangzhou Tennis Center: A Case Study in Integrated Parametric Design
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.e2j
summary This paper will provide a detailed overview of the parametric methodologies which were integral to the design and development of the Hangzhou Tennis Center. The tennis center is a 10,000 seat facility located in Hangzhou, China and is a part of a larger sports and entertainment master plan which features retail, public recreation, and an Olympic-size stadium to be completed in 2013.
series ACADIA
last changed 2022/06/07 07:49

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_053
id ecaade2011_053
authors Barros, Mário; Duarte, José P.; Chaparro, Bruno
year 2011
title Digital Thonet: An automated system for the generation and analysis of custom-made chairs
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.521-529
doi https://doi.org/10.52842/conf.ecaade.2011.521
wos WOS:000335665500060
summary A system is presented to support the designer in creating custom versions of chairs within a predefined design language using Thonet chairs as a case study. The system consists of parametric models based on shape grammars linked to structural analysis to provide an integrated generative process for mass customization in the furniture industry.
keywords Thonet; furniture design; finite element method; parametric design; mass customization
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p043
id cf2011_p043
authors Boeykens, Stefan
year 2011
title Using 3D Design Software, BIM and Game Engines for Architectural Historical Reconstruction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 493-509.
summary The use of digital tools has become a tremendous aid in the creation of digital, historical reconstructions of architectural projects. Regular visualization techniques have been used for quite some time and they still pose interesting approaches, such as following cinematic techniques [1]. While common visualizations focus on pre-rendered graphics, it is possible to apply Game Engines [2] for real-time architectural visualization, as witnessed by [3] and [4]. In the course of our teaching and research efforts, we have collected experience with several visualization and modeling techniques, including the use of gaming engines. While the modeling of qualitative geometry for use in regular visualization already poses an elaborate effort, the preparation of models for different uses is often not trivial. Most modeling systems only support the creation of models for a single amount of detail, whereas an optimized model for a real-time system will have fairly different constraints when compared to non-real-time models for photorealistic rendering and animation. The use of parametric methods is one usable approach to tackle this complexity, as illustrated in [4]. One of the major advantages of using parametric approaches lies precisely in the possibility of using a single model to generate different geometry with control over the amount of detail. We explicitly tackle this in a Building Information Modeling (BIM) context, as to support much more than purely 3D geometry and visualization purposes. An integrated approach allows the same model to be used for technical drawings in 2D and an optimized 3D model in varying levels of detail for different visualization purposes. However, while most Building Information Modeling applications are targeted to current architectural practice, they seldom provide sufficient content for the recreation of historical models. This thus requires an extensive library of parametric, custom objects to be used and re-used for historically accurate models, which can serve multiple purposes. Finally, the approach towards the historical resources also poses interpretation problems, which we tackled using a reasonably straightforward set up of an information database, collecting facts and accuracies. This helps in the visualization of color-coded 3D models, depicting the accuracy of the model, which is a valuable graphical approach to discuss and communicate information about the historical study in an appealing format. This article will present the results of different reconstruction case studies, using a variety of design applications and discuss the inherent complexity and limitations in the process of translating an active, evolving model into an environment suitable for use in a real-time system. Especially workflow issues are identified, as the translation of the model into the game engine should be repeated several times, when the model is further refined and adapted. This used to involve a large amount of repetitive work, but the current crop of game engines have much better approaches to manage the updating of the geometry.
keywords Real-time architecture, game engines, cultural heritage, digital reconstruction, parametric modeling, Building Information Modeling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20109205
id ijac20109205
authors Hudson, Roly; Paul Shepherd, David Hines
year 2011
title Aviva Stadium: A case study in integrated parametric design
source International Journal of Architectural Computing vol. 9 - no. 2, 187-204
summary The nature of large complex buildings requires specialized skills across a multi-disciplinary team and high levels of collaboration and communication. By taking a parametric approach to design and construction, high quality results can be delivered on budget on time. This type of approach facilitates the opportunity for design teams to work in an iterative manner.A parametric model reduces the time associated with complex design changes while providing a centralized method for coordinating communication. In this paper the recently completed Aviva Stadium is used to illustrate the ways in which these benefits manifest themselves on built work.The authors identify the moments in the design and construction process that truly justify the effort in implementing a parametric approach. By approaching design in this way a “design conversation” can take place between parties involved, resulting in a better building.
series journal
last changed 2019/05/24 09:55

_id cf2011_p112
id cf2011_p112
authors Schlueter, Arno
year 2011
title Integrated Design Process for Prefabricated Façade Modules with Embedded Distributed Service Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 419-434.
summary The awareness of the environmental impact of buildings concerning their CO2 emissions, their energy and resource consumption has raised the challenges on building design, construction and operation. Building service systems are among the main contributors to building related emissions. Their consideration already in design is therefore of growing importance. Distributed service systems represent a new paradigm towards the supply of a building with energy and matter. Being small, efficient and networked, they can be distributed within the building fabric to allow an efficiently supply of the building space. Their employment, however, affects the spatial layout, construction and resulting building performance. In order to capture the resulting complex dependencies, a strategy to integrate such systems into the architectural design process is necessary. In this work a design process is proposed, that integrates distributed service systems into building design, dissolving the classical divide between architectural design and service systems layout. Digital modelling and computational methods are employed to create and analyse design solutions, visualize performance criteria and provide the relevant data for the intended digital fabrication process. The process is exemplified using a joint university-industry case study project focusing on parametric façade modules, developed in a seamless digital process from concept to fabrication.
keywords integrated design, design process, performance assessment, digital fabrication, distributed building service systems
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ijac20119402
id ijac20119402
authors Toth, Bianca; Flora Salim, Jane Burry, John Frazer, Robin Drogemuller and Mark Burry
year 2011
title Energy-Oriented Design Tools for Collaboration in the Cloud
source International Journal of Architectural Computing vol. 9 - no. 4, 339-359
summary Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design.As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation.A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly.This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
series journal
last changed 2019/07/30 10:55

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
doi https://doi.org/10.52842/conf.acadia.2011.170
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id cf2011_p147
id cf2011_p147
authors Erbas, Irem; Bittermann Michael, Stouffs Rudi
year 2011
title Use of a Knowledge Model for Integrated Performance Evaluation for Housing (re)design Towards Environmental Sustainability: A Case Study
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 281-296.
summary This paper focuses on the development of a knowledge model in the context of energy efficiency and indoor climate interventions, their impacts on each other and on architectural design preferences (for instance architectural expression or any spatial functionality aspect) via an existing house case study. In addition, it attempts to discuss how this type of model can be a reference for a decision support tool and be applied to the (re)design of dwellings. The model is considered to provide an integral knowledge base for the design professional both to evaluate existing designs and to use it as a support during design and decision making in order to reach the best possible solution, with optimal performance in terms of indoor comfort, energy-efficiency and overall design performance. In other words, its aim is to enable the assessment of the performance of the end result with respect to design choices, beforehand. In this paper, design performance is modeled by means of fuzzy logic operations. It is a method to deal with subjective and vague requirements such as low energy consumption, low overheating risk, high comfort, etc. The method of intelligent information processing is explained and a partial application is presented.
keywords energy efficiency, indoor comfort, design decision support, knowledge modeling, performance evaluation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id acadiaregional2011_009
id acadiaregional2011_009
authors Esquivel, Gabriel; Ryan Collier
year 2011
title A Swell Project: Between Parametrics and Fabrication
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.r0r
summary As a case study, Swell serves as: 1) an investigation into architectural ornamentation using a contemporary framework, as directed through specific modes of research, 2) a study in fabrication materials and methods, especially through the realization of form, and 3) as a pedagogical tool, loosely assembled through real and virtual space. This essay will focus mainly on the fabrication methods in terms of why and the pedagogical research initiatives and reactions that went into the design of Swell. The project was conceived through a summer studio which was formed to investigate tools and methods available at the Texas A&M Architecture Ranch and to further the local pedagogical direction toward fabrication in architectural design at Texas A&M University as a whole. That is to say, there was no specific agenda toward parametrics, form, research, technology, or the like. At the same time, as the research continued, certain decisions were cast in terms of technology, sensibility, site, etc. informed by research, iterative processes, or parametric evaluation that ultimately formed the project as it exists today.
series ACADIA
last changed 2022/06/07 07:49

_id 26ce
id 26ce
authors Facklam, Ferdinand; Pecegueiro Curado, Felipe
year 2011
title Data Driven Parametric Design
source PARC Journal - Issue 7
summary In the case study “Live Building” explains a sensory process. The project shows how to collect data,transformed and transported into a shape. Innovation is not only the approach of the draft, but the systematic procedure and the resulting diversity of solutions. The search for the geometric shape and the key to the concept will be answered in detail.
keywords Architecture, Computer Systems, Parametric Design, Sensor Technology, Urban Development
series journal paper
type normal paper
email
more http://www.fec.unicamp.br/~parc/vol2/n7/parc07_facklan.pdf
last changed 2011/10/28 11:01

_id caadria2011_013
id caadria2011_013
authors Kozlova, Karine; Roham M. Sheikholeslami, Lyn Bartram and Robert F. Woodbury
year 2011
title Graph visualization in computer-aided design: An exploration of alternative representations for GenerativeComponentsTM Symbolic View
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 133-142
doi https://doi.org/10.52842/conf.caadria.2011.133
summary In this paper we explore graph models used to illustrate the relationships between elements of designs in computer-aided design (CAD) systems. We discuss common limitations and ways to make such representations more usable and interactive. In order to study common problems of symbolic representations in CAD systems, we conducted a survey of a number of CAD applications that employ graph representations in their interface and provided comparative analysis of the properties of graph representations in these systems. As a case study we used Bentley GenerativeComponentsTM (GC) system - a parametric CAD application that uses graph (“symbolic”) view to visualize the structure of design. We conducted series of interviews with expert GC users that revealed many limitations of the GC symbolic view. To address these limitations, we developed alternative representations of symbolic view that aim at enhancing user experience with the system and reviewed these with expert GC users. As a result of our study, we developed a set of interactive prototypes using SHriMP1 visualization tool and Processing programming language. These provide improved ways of user interaction with symbolic representation, including better readability of the graph and, as a result, an improved support for design model analysis.
keywords Graph visualization; visual interfaces; CAD systems; visual interaction; node-link diagrams
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2011_046
id ecaade2011_046
authors Kudumovi_, Lana; Taso, Amra; Hasanbegovi_, Omer
year 2011
title Digital design and fabrication: Case study: seashell
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.779-787
doi https://doi.org/10.52842/conf.ecaade.2011.779
wos WOS:000335665500090
summary Computational aspects of architectural design have revolutionized actual process, and have made a new platform for cooperation that spans across all disciplines. The focus of this study is to understand how the seashell form can be applicable in design process of human architectures. Our approach will show the act of choosing an inspirational natural form and its application into the virtual world, then digitalization, transformation, and evaluation of the form that are suitable for human architecture. 3D model generating would be performed by doing the scan of a selected seashell form. Further action would be to import the object as a tool in the Zbrush application, and continued modeling transformations. This phase would include other parameters that need to be integrated during the architectural design process since architecture usually exists in a radically different environment in comparison with the seashell.
keywords Complexity; architectural form; generative design; digital design fabrication; rapid prototyping
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_088
id ecaade2011_088
authors Paio, Alexandra; Reis, Joaquim; Santos, Filipe; Lopes, Pedro Faria; Eloy, Sara; Rato, Vasco
year 2011
title Emerg.cities4all: Towards a shape grammar based computational system tool for generating a sustainable and integrated urban design
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.152-158
doi https://doi.org/10.52842/conf.ecaade.2011.152
wos WOS:000335665500017
summary The ongoing research project called “Emerg.cities4all” is focused on the development of a generative computer-aided planning support system for cities and housing to low-income populations, using a descriptive method as the Shape Grammars and based on multi-agent rule-based system. The goal is to develop a system that could reveal the cultural, social and spatial dynamics involved in the genesis of informal settlements (favelas, musseques and caniços) and use it to generate contemporary humanized urban morphologies. The multi agent shape grammar implementation could generate automatically designs according to different types of users: urban planners, architect and local end users. This paper presents the methodology and the initial results of the research, using an informal settlement as a case study.
keywords Shape grammar; Multi-agent systems; Urban design; Informal settlements; Emergcities4all
series eCAADe
email
last changed 2022/05/01 23:21

_id eaea2009_piga
id eaea2009_piga
authors Piga, Barbara E.A.
year 2011
title The Urban Simulation and Projects Evaluation Laboratory at the Politecnico di Milano: An Educational and Research Facility
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 115-120
summary At the beginning of 2007 an Italian Urban Simulation Laboratory was founded at the Politecnico di Milano. The laboratory, coordinated by prof. Fausto Curti, has been developed thanks to the one year presence of the visiting professor Peter Bosselmann, director of the Environmental Simulation Laboratory at the University of California at Berkeley. The laboratory has an interdisciplinary approach and a threefold mission: experiment, using the laboratory setting to study urban projects at different scales; communicate, aiding public communication by making urban projects understandable to everyone; integrate and innovate, working on different kind of simulations techniques in an integrated way. In its initial experience the laboratory is primarily a didactic and research facility. Students can join the work and participate actively to the research. Until now about 40 students have worked with us, more than a half were foreign students from all over the world. The majority of the students did an internship of about 150 (three-year degree) or 300 (master degree) hours and some of them have continued working after this period developing a thesis. At the moment the case study, used as a pilot research, is about the Porta Nuova project at the Garibaldi- Repubblica area in Milan. The 300.000 mq of the total area and its well served central position make this place strategic for Milan. In this area the adopted urban transformation plan is creating a new business center that affects redevelopment projects, new infrastructures, and a park. The overall project will overhanging the surroundings city center with some of the highest buildings of its skyline. The importance of the site and the dimension of the project make this case significant to test the use of simulation for supporting evaluations about morphological aspects, comfort conditions, visual impacts, and other aspects that directly influence the quality of the new urban spaces. We are now applying different simulation methodologies in order to better understand the peculiar usefulness of each kind as a tool to support evaluation. As any kind has its own limits we work with different typologies at the same time. We are working with 1:500 scale physical model of a 1 km square of the area and different kind of static and dynamic simulations. We developed, with an external office, a micro-car to move a micro-camera in the maquette. We use this equipment to better explain the project implications to the students by producing subjective shot videos or showing a walk in real-time. To reproduce in a better way some relevant walks through the transformed site we have also produced some videos made of a superimposition of the real existing context and the virtual projects. To do this we used a rendered video of the project superimposed to the filmed promenade of the today condition, previously recorded using steadycam. A lot of static simulations has been employed to better understand the new city configuration from some representative points of view, as for example the roof of the Duomo cathedral. We are now developing some other kinds of analysis such as shadows impact; this is done by using a 1:1000 scale maquette in the Heliodon, but also with some digital tools. In the next future a work with the wind tunnel will help to understand some other comfort implications of the project at the micro-urban scale. The multilayer approach is the main aim of the laboratory and is an important tool to clarify the multidimensional project impacts to the students. In this way the laboratory can be a learning tool, it can stimulate the project process and support decision-making while improving the knowledge about the correct use of simulations for evaluating the cumulative implications of the proposed urban processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id acadiaregional2011_030
id acadiaregional2011_030
authors Ra, Seung
year 2011
title Parametric Translations
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
doi https://doi.org/10.52842/conf.acadia.2011.x.u1v
summary The aim of this paper is to understand the outcomes of parametric methods in beginning design projects and their impact on rethinking digital technology in current design education. In order to realize comprehensive results, in this paper i) conceptual and formative projects are presented to describe specifications of a parametric design at OSU School of Architecture; ii) for OSU SOA, we plot pedagogical objectives and evaluate how we have interpreted and applied novel digital technology into the design process; and iii) Cultivate parametric design as systemic and organizational design. Along with unit-based, component design, expand the use of digital tools to become the discipline and domain of the creative culture. How digital tools are integrated into early design education through a collaborative studio project will be the focus of the study. Through the experimental exercises, we can begin to explore how the digital process can be integrated at a fundamental level.
series ACADIA
last changed 2022/06/07 07:49

_id ecaade2011_165
id ecaade2011_165
authors Riether, Gernot; Jolly, Knox
year 2011
title Flexible Systems: Flexible Design, Material and Fabrication: The AIA pavilion as a case study
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.628-634
doi https://doi.org/10.52842/conf.ecaade.2011.628
wos WOS:000335665500073
summary This paper is about the fabrication process of the DesCours pavilion, a project that was realized in the context of a graduate design studio in the Fall Semester of 2010. The assembly and construction process of the pavilion will be used to show how parametric software, such as Grasshopper can inform fabrication and material systems. The paper will explain the fabrication process of a pavilion in detail and make an argument for plastic as a material that not only responds to the malleable characteristic of digital tools but also to environmental issues.
keywords Design Build; Grasshopper; CNC; Parametric Design; Digital Fabrication; Plastic
series eCAADe
email
last changed 2022/05/01 23:21

_id sigradi2011_338
id sigradi2011_338
authors Rocha Isaias, Hector
year 2011
title Centro de Informação e Convivência: uma plataforma para aplicação de desenho urbano fundamentada em sistemas de desenho paramétrico para a área de influência do Complexo Industrial e Portuário o Pecém [Information and Coexistence Center: a platform for application of urban design based on parametric design systems for the area of influence of the Industrial and Port Complex of Pecém]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 542-545
summary Planning and urban design has a considerable impact on the performance of cities. How these complex processes stretching over a long period and involves a lot of collaboration, the lack of integrated tools to support this process hampers the ability to maximize the response plans of contextual conditions. The paper proposes approximate the parametric design of urban design processes, integrating an academic study to a real need for development and monitoring of plans and drawings for the urban growth area of the industrial and port complex of Pecem.
keywords Parametric urbanism; parametric design; urban design; urban planning
series SIGRADI
email
last changed 2016/03/10 09:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_34557 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002