CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 561

_id cf2011_p049
id cf2011_p049
authors Hii Jun Chung, Daniel; Chye Kiang Heng, Lai Choo Malone Lee, Ji Zhang
year 2011
title Analyzing the Ventilation Performance of Tropical High Density Residential Precincts using Computational Fluid Dynamics
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 351-366.
summary Major cities in the world are getting bigger as they continue to grow to cater for more population increase. These cities normally forced the urban planning to go high density. In the tropical context, high density cities like Singapore and Hong Kong do not have the luxury of space to go low rise and compact. These cities have to build to the floor area ratio of 4 and above to cater for the population. Their only solution is to go up, as high as possible, to the extent that the natural wind flow pattern will be altered, which brings environmental impact to the people. This is generally not good since wind flow helps to maintain the thermal comfort of the people as heat and pollutants are being channeled out of the city to avoid Urban Heat Island effect. In the tropical context, wind flow is crucial to maintain people’s comfort as the temperature is generally very high from the exposure of the sun for the entire year. Studies have shown that wind flow plays the most significant part in maintaining human comfort despite exposing to direct sunlight in the tropics. Therefore, wind flow analysis is extremely crucial to make the design sustainable and energy efficient, as people will not have to depend on mechanical ventilation to compensate for the lack of wind flow. Computational Fluid Dynamics (CFD) has always been used in the field of architecture, urban design and urban planning to understand the patterns of wind flow through the built environment apart from wind tunnel tests. The availability of more powerful hardware for the mainstream computer users as well as the lowering costs of these computers made CFD more possible to be adopted in the design world today. This also means using CFD in the design process, especially to analyze the impact of the design to the current site conditions and annual wind patterns will help the new design to be more responsive to the site. The interest of this paper is to analyze the high density typologies to see how well they respond to the local wind flow pattern. A typology is considered acceptable when the wind flow going through the site is still maintaining acceptable wind speed. This means it does not block off the wind and create stagnant spaces. Different designs generate different typologies which will respond differently to the wind pattern. The study aims at comparing the local high density typologies in terms of their response to the wind. Changes to a typology can be explored too to see if the performance will be different. For a typology which is considered a total failure in terms of response to wind, it may improve its performance if the orientation is altered. The CFD software can also parametrically respond to the changes of the typologies’ dimensions. This is helpful to see how much more a typology can still be performing well before failure by increasing the floor area index. The easiest way to do this is to pump up the building height. In conclusion, designing in response to wind is extremely important as it is more sustainable and responsive to Urban Heat Island effect. A design which responds well to the wind patterns will help save cost of cooling load and fan expenditure. The people will also be more willing to use the outdoor spaces which will as a whole generate more vibrant city spaces. As a result, a high density city with huge population count can still enjoy good thermal comfort if the general urban planning and design respond well to wind.
keywords computational fluid dynamics, sustainability, high density, urban design, airflow, ventilation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2010_023
id caadria2010_023
authors Kenzari, Bechir
year 2010
title Fabricating twisted towers
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 239-247
doi https://doi.org/10.52842/conf.caadria.2010.239
summary The miniature replicas of multi-billion dollar property development projects provide every year a spectacle of the vast imagination of architects and master developers at Cityscape Dubai exhibition. The technical aspect of the model-making industry component is a complex one in that it often engages the modelling of very subtle structures such as twisted towers. One illustration of these is the Infinity Tower in Dubai Marina (designed by SOM). To be completed in 2011, this 330-metre high-rise is composed of 80 floors and is intended to be the world’s tallest high-rise featuring a 90_ twist. Each floor rotates by 1.2 degrees to attain the full 90_ spiral, creating the shape of a helix. The paper discusses the physical modelling of this tower, with a description of both the digital and the constructive parts.
keywords Fabrication; models; Rhinoceros; twisted towers; Dubai
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
doi https://doi.org/10.52842/conf.acadia.2012.047
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2011_009
id caadria2011_009
authors Anderson, Jonathon and Ming Tang
year 2011
title Form follows parameters: Parametric modeling for fabrication and manufacturing processes
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 91-100
doi https://doi.org/10.52842/conf.caadria.2011.091
summary As the architectural field continues to explore the possibilities of parametric design it is important to understand that architectural computation has evolved from representations to simulation and evaluation. This paper explores the digital processes of parametric scripting as a way to generate architectural artefacts that can be realized in the physical landscape through various digital fabrication and industrial manufacturing techniques. This paper will highlight the important discoveries of the geometries and the implications the script has on the construction processes. One benefit of using parametric modelling as a component to the manufacturing pipeline is being able to explore several design iterations in the digital realm before ever realizing them in the physical landscape. Furthermore, parametric modelling allows users to control the production documentation and precision needed to manufacture. As a result, the design pipeline presented in this paper seeks to eliminate the construction processes that hinder the physical act of making architecture.
keywords Manufacturing process; parametric modelling; 3D printing, plastic casting; mould making
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id cf2011_p098
id cf2011_p098
authors Bernal, Marcelo; Eastman Charles
year 2011
title Top-down Approach for Interaction of Knowledge-Based Parametric Objects and Preliminary Massing Studies for Decision Making in Early Design Stages
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 149-164.
summary Design activities vary from high-degree of freedom in early concept design stages to highly constrained solution spaces in late ones. Such late developments entail large amount of expertise from technical domains. Multiple parallel models handle different aspects of a project, from geometric master models to specific building components. This variety of models must keep consistency with the design intent while they are dealing with specific domains of knowledge such as architectural design, structure, HVAC, MEP, or plumbing systems. Most of the expertise embedded within the above domains can be translated into parametric objects by capturing design and engineering knowledge through parameters, constraints, or conditionals. The aim of this research is capturing such expertise into knowledge-based parametric objects (KPO) for re-usability along the design process. The proposed case study ‚Äì provided by SOM New York‚ is the interaction between a massing study of a high-rise and its building service core, which at the same time handles elevators, restrooms, emergency stairs, and space for technical systems. This project is focused on capturing design expertise, involved in the definition of a building service core, from a high-rise senior designer, and re-using this object for interaction in real-time with a preliminary massing study model of a building, which will drive the adaption process of the service core. This interaction attempts to provide an integrated design environment for feedback from technical domains to early design stages for decision-making, and generate a well-defined first building draft. The challenges addressed to drive the instantiation of the service core according to the shifting characteristics of the high-rise are automatic instantiation and adaptation of objects based on decision rules, and updating in real-time shared parameters and information derived from the high-rise massing study. The interaction between both models facilitates the process from the designer‚Äôs perspective of reusing previous design solutions in new projects. The massing study model is the component that handles information from the perspective of the outer shape design intent. Variations at this massing study model level drive the behavior of the service core model, which must adapt its configuration to the shifting geometry of the building during design exploration in early concept design stages. These variations depend on a list of inputs derived from multiple sources such as variable lot sizes, building type, variable square footage of the building, considerations about modularity, number of stories, floor-to-floor height, total building height, or total building square footage. The shifting combination of this set of parameters determines the final aspect of the building and, consequently, the final configuration of the service core. The service core is the second component involved in the automatic generation of a building draft. In the context of BIM, it is an assembly of objects, which contains other objects representing elevators, restrooms, emergency stairs, and space for several technical systems. This assembly is driven by different layouts depending on the building type, a drop-off sequence, which is the process of continuous reduction of elevators along the building, and how this reduction affects the re-arrangement of the service core layout. Results from this research involves a methodology for capturing design knowledge, a methodology for defining the architecture of smart parametric objects, and a method for real-time-feedback for decision making in early design stages. The project also wants to demonstrate the feasibility of continuous growth on top of existing parametric objects allowing the creation of libraries of smart re-usable objects for automation in design.
keywords design automation, parametric modeling, design rules, knowledge-based design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_039
id ecaade2011_039
authors Da_lar, Özgür; Tong, Togan
year 2011
title A Method on Using Video in Architectural Design Process: Matchmoving
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.339-348
doi https://doi.org/10.52842/conf.ecaade.2011.339
wos WOS:000335665500039
summary Computer technologies are used frequently and effectively in film-making. It is almost inevitable to exclude computer aid in different phases of the process such as video editing, compositing and generation of visual effects. Therefore, techniques and software used in this field are improving every day. In this paper, potentials of a technique known in film making industry as matchmoving will be elaborated to be used in architectural design process. The types of software available for matchmoving purposes excel at generating 3D environment data from video shots, making them very useful tools for architects.
keywords Architectural analysis; digital environment generation; matchmoving; motiontracking
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2012_113
id ecaade2012_113
authors Jutraz, Anja ; Zupancic, Tadeja
year 2012
title Digital system of tools for public participation and education in urban design: Exploring 3D ICC
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 383-392
doi https://doi.org/10.52842/conf.ecaade.2012.1.383
wos WOS:000330322400039
summary This article is a starting point for the development of experiential urban co-design interfaces to enhance public participation in local urban projects and to be also used as a communication and collaboration tool in urban design. It is based on the previous research involving 3D city models utilized as understandable design interfaces for the non-technical public (Jutraz, Zupancic, 2011), where we have already explored different views (pedestrian, intermediate and bird’s-eye view), as well as the means by which the information obtained from these different views may be combined by shifting between viewpoints. Previous work was conducted in the “street lab” as well as the Urban Experimental Lab, which was developed specifi cally for the public’s participation in urban planning (Voigt, Kieferle, Wössner, 2009). Presented in this article is the next step that explores the immersive collaboration environment 3D ICC [1], formerly known as Teleplace. The environment was developed for effi cient collaboration and remote communication and shifts the research focus towards questions regarding how to employ both labs as interfaces between the non-technical public and design professionals. As we are facing the lack of digital systems for public participation and education in urban design, different digital tools for communication and collaboration should be combined into a new holistic platform for design. A digital system of tools needs to be developed that supports the urban design decision-making process and focuses on improved final solutions and increased satisfaction amongst all participants. In this article the system of digital tools for public participation, which include communication, collaboration and education, will be also defi ned, with its basic characteristics and its elements.
keywords Digital system of tools; collaboration; 3D model; public participation; urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id acadia11_112
id acadia11_112
authors Klinger, Kevin
year 2011
title Informing Design through Production Formulations
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 112-113
doi https://doi.org/10.52842/conf.acadia.2011.112
summary Over the decade of the aughts, architectural discourse has charted a new course, and in the wake of the digital effect on mainstream architectural thinking, we find ourselves in a great age of exploration. Research in digital fabrication has moved from the general to the specific, in that it aims to focus efforts related to technological impact on particular cases and variable parameters which contribute to even larger ideas, such as manufacturing, the social impact, sustainable practices, etc. Specific work on building components, coupled with a pragmatic rigor about durability, strength, and production have provided concrete examples of work that spin out of these design-through-production investigations. To be certain, each new design-through-production project explores unique territory and contributes to the knowledge map by adding to a matrix of possible applications. Still, we align our work with the age-old discipline of architectural thinking, while privileging “Making, Materials, Performance, Form, and Function.” Indeed, form is informed by performance! The principles that govern the human decision-making, in light of this new kind of digitally generated work have yet to be clearly articulated, but techniques and methods have expanded to create new opportunities for making architecture. In fact, research has tended to be less about framing the new principles for making digital architecture and more about adding specific cases to the knowledge base, as each new project helps to define the collective body.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:51

_id ecaade2011_116
id ecaade2011_116
authors Koziko_lu, Nilüfer; Kavlak, Emrah
year 2011
title Introducing Architectural Design Foundations Through Algorithmic Design And Experimentations With Materials: A methodology for freshman class in architecture
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.70-76
doi https://doi.org/10.52842/conf.ecaade.2011.070
wos WOS:000335665500007
summary This paper presents a lecture methodology using pattern based and algorithmic design principles for an introductory architectural design course aimed towards students who are not oriented in design practices but in natural sciences. This methodology is built upon eights interconnected steps, starting with analytical pattern extraction from nature - from the unique texture and structure of a plant (seed or fruit) and also from its lifecycle and relation to the existing habitat. The steps include abstract pattern making with the use of software tools and material building of abstracted geometries as standalone structures. Throughout these steps, principles of information design field is demonstrated to improve students’ abilities to analyze visual information.
keywords Pattern; Parametric Design; Design Education; Information Design
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_144
id ecaade2011_144
authors Kunze, Antje; Halatsch, Jan; Vanegas, Carlos; Jacobi, Martina Maldaner
year 2011
title A Conceptual Participatory Design Framework for Urban Planning: The case study workshop ‘World Cup 2014 Urban Scenarios’, Porto Alegre, Brazil
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.895-903
doi https://doi.org/10.52842/conf.ecaade.2011.895
wos WOS:000335665500103
summary This paper focuses on the definition of a conceptual participatory design framework for urban planning. Traditional planning methods can no longer satisfy the growing demands on sustainable urban planning in regard to factors such as complexity, problem size, and level of detail and these limitations make the development of new approaches necessary. Expert knowledge as well as insights from stakeholders and community members needs to take part equally in the decision-making process since they are responsible for a broad understanding and acceptance of final planning decisions. Therefore, a participatory framework is presented in the following, which integrates needs and requirements of stakeholders. In order to enable diverse groups of stakeholders to act conjointly, we propose the application of interactive decision support tools, which will leverage general conclusions especially to solve crucial zplanning decisions.
keywords Decision-making process; stakeholder participation; shape grammars; procedural model; urban planning
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_086
id ecaade2011_086
authors Lassance, Guilherme; Libert, Cédric; Lassance, Patricia Figueira; Feghali, Maria Elisa
year 2011
title The sensitive tower: Architectural and urban design education faced with fragile metropolitan ecologies
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.581-588
doi https://doi.org/10.52842/conf.ecaade.2011.581
wos WOS:000335665500067
summary Neighborhoods that are still outside the market target can find alternative ways of re-development. Therefore, it is necessary to design architectures compatible with their fragile ecologies. This research benefits from a previous study where we tried to observe the evolution of the uses of buildings and ways of living faced with changes in environmental conditions in a given urban context. Increased automobile traffic has led to changes in the use of residential spaces whose function was gradually replaced by commercial activities. Making use of graphic-oriented interpretation of urban ambiance and landscape analysis methodology applied to the design of different floor levels, this paper aims to introduce the concept of sensitive tower defined on the basis of observations made in our post-occupancy survey as a teaching strategy for the design studio faced with the current challenges of the contemporary metropolis.
keywords Design process; design education; contemporary metropolis; urban environment
series eCAADe
email
last changed 2022/05/01 23:21

_id eaea2009_loerincz_szilagyi_urbin
id eaea2009_loerincz_szilagyi_urbin
authors Loerincz, Daniel; Brigitta Szilagyi, Agnes Urbin
year 2011
title Space Representation with Six Vanishing Points
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 161-171
summary Even the antique world’s scientists were interested in the problem of realistic space representation. Renaissance artists realized the first significant results with the one landmark perspective: in this mode the relative positions of objects are easy to define. Leonardo da Vinci discovered that the one-point perspective shows in different measure the objects in the same distances from the viewer but different distances from the landmark. To eliminate this problem he applied the natural perspective for the first time (two-point perspective). With this method he extended the field of view to 90° (in line with the horizon). Later the three-point perspective made possible to represent those objects which have quite large extension in all directions. Because of the feature of the human eye in everyday life we only need these three space representations. The extension of the field of view raises the problem that parallel lines seem to run to different landmarks. So we can conclude that in case of large field of view the images of straight lines are usually not straight lines. This paradox is possible because in case of perspectives with one two and three vanishing points we represent only half lines on the paper and we neglect three more landmarks. It’s easy to see that if two parallel lines meet in front of us, it must happen in the same way behind us. The six- point perspective is a space representation which takes these problems into consideration. In this way we are able to represent on a terminate field the whole space around us except the viewpoint. This system can terminate the rank of the perspectives started with the traditional one-, two- and three- point perspectives and continued with the four- and five-point perspectives. In literature we can find some book about art which is engaged in this system and gives alternative solutions against the conventional space representations and some enterprising artist are making experiments in this field.
series other
type normal paper
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:54

_id caadria2011_022
id caadria2011_022
authors Lowe, Russell; Mark Hedley and Richard Goodwin
year 2011
title Real-time porosity: Combining a computer game engine with environmental sensors to better understand pedestrian movement in public/private space and in real-time
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 229-238
doi https://doi.org/10.52842/conf.caadria.2011.229
summary This paper describes the theoretical context, design, implementation and evaluation of a novel method for understanding pedestrian movement in public/private space. It examines the pedestrian counting and tracking methodologies of Space Syntax and proposes an alternative methodology that links sensors embedded in real-world environments and carried by pedestrians with an environment and avatars in a contemporary computer game. In this way observers are able to closely trail pedestrians without affecting their decision making. Results from a field trial are presented where the sensors and computer gaming technology were tested within a challenging real-world environment.
keywords Pedestrian movement; public/private; Space Syntax; environmental sensors
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2011_110
id sigradi2011_110
authors Malmod, Alicia; Tejada Silvina
year 2011
title Diseño de una Estrategia de Comunicación en Relación con la Gestión del Riesgo Sísmico desde la Educación [Designing a Communication Strategy in relation to Seismic Risk Management from the field of Education]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 308-312
summary This study describes a process developed in relation with the design of a communication strategy that aims to improve the communicability of a Seismic Risk Management Model from the field of Education. This Model and its communication strategy was developed by a research team fromFacultad de Arquitectura, Urbanismo y Diseño, Universidad Nacional de San Juan, which is committed to buildproposals related to seismic risk management. The project is addressed to the Ministry of Education of San JuanProvince, and it aims to contribute to broaden awareness in the levels of decision-making, facing the event of an earthquake disaster.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2011_163
id ecaade2011_163
authors Mark, Earl
year 2011
title Visualizing the Unknown in Historical Vernacular Architecture: Making Speculation from Archaeological Fragments Explicit
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.868-874
doi https://doi.org/10.52842/conf.ecaade.2011.868
wos WOS:000335665500100
summary Computer based visualization tools have the capacity to create convincing reconstructions of historical structures that appear to be authentic and complete but where inferences have been drawn from relatively limited evidence. The challenge is how to make the exciting process of discovery, argument and reasoning more self-evident in the model and also make known the alternative constructions that were plausible but less likely. This paper refers to two computer visualizations developed by the author for world heritage building sites. In both cases, a similar geometrical modeling technique was used. However, in the second case, the 3D modeling approach is developed for juxtaposition with captured dialogs, the evidence used, and the process followed so as to make level of speculation more explicit.
keywords Authentication; Three-Dimensional Digital Reconstruction; Archaeology; Parametric Modeling; Decision Tree
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_139134 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002