CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id cf2011_p170
id cf2011_p170
authors Barros, Mário; Duarte José, Chaparro Bruno
year 2011
title Thonet Chairs Design Grammar: a Step Towards the Mass Customization of Furniture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 181-200.
summary The paper presents the first phase of research currently under development that is focused on encoding Thonet design style into a generative design system using a shape grammar. The ultimate goal of the work is the design and production of customizable chairs using computer assisted tools, establishing a feasible practical model of the paradigm of mass customization (Davis, 1987). The current research step encompasses the following three steps: (1) codification of the rules describing Thonet design style into a shape grammar; (2) implementing the grammar into a computer tool as parametric design; and (3) rapid prototyping of customized chair designs within the style. Future phases will address the transformation of the Thonet’s grammar to create a new style and the production of real chair designs in this style using computer aided manufacturing. Beginning in the 1830’s, Austrian furniture designer Michael Thonet began experimenting with forming steam beech, in order to produce lighter furniture using fewer components, when compared with the standards of the time. Using the same construction principles and standardized elements, Thonet produced different chairs designs with a strong formal resemblance, creating his own design language. The kit assembly principle, the reduced number of elements, industrial efficiency, and the modular approach to furniture design as a system of interchangeable elements that may be used to assemble different objects enable him to become a pioneer of mass production (Noblet, 1993). The most paradigmatic example of the described vision of furniture design is the chair No. 14 produced in 1858, composed of six structural elements. Due to its simplicity, lightness, ability to be stored in flat and cubic packaging for individual of collective transportation, respectively, No. 14 became one of the most sold chairs worldwide, and it is still in production nowadays. Iconic examples of mass production are formally studied to provide insights to mass customization studies. The study of the shape grammar for the generation of Thonet chairs aimed to ensure rules that would make possible the reproduction of the selected corpus, as well as allow for the generation of new chairs within the developed grammar. Due to the wide variety of Thonet chairs, six chairs were randomly chosen to infer the grammar and then this was fine tuned by checking whether it could account for the generation of other designs not in the original corpus. Shape grammars (Stiny and Gips, 1972) have been used with sucesss both in the analysis as in the synthesis of designs at different scales, from product design to building and urban design. In particular, the use of shape grammars has been efficient in the characterization of objects’ styles and in the generation of new designs within the analyzed style, and it makes design rules amenable to computers implementation (Duarte, 2005). The literature includes one other example of a grammar for chair design by Knight (1980). In the second step of the current research phase, the outlined shape grammar was implemented into a computer program, to assist the designer in conceiving and producing customized chairs using a digital design process. This implementation was developed in Catia by converting the grammar into an equivalent parametric design model. In the third phase, physical models of existing and new chair designs were produced using rapid prototyping. The paper describes the grammar, its computer implementation as a parametric model, and the rapid prototyping of physical models. The generative potential of the proposed digital process is discussed in the context of enabling the mass customization of furniture. The role of the furniture designer in the new paradigm and ideas for further work also are discussed.
keywords Thonet; furniture design; chair; digital design process; parametric design; shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade2011_099
id ecaade2011_099
authors Ahlquist, Sean; Menges, Achim
year 2011
title Methodological Approach for the Integration of Material Information and Performance in the Design Computation for Tension-Active Architectural Systems
doi https://doi.org/10.52842/conf.ecaade.2011.799
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.799-808
summary As computational design processes have moved from representation to simulation, the focus has shifted towards advanced integration of performance as a form defining measure. Performance, though, is often assessed purely on the level of geometry and stratified between hierarchically independent layers. When looking at tension-active membrane systems, performance is integrated across multiple levels and with only the membrane material itself, defining the structural, spatial and atmospheric qualities. The research described in this paper investigates the integrative nature of this type of lightweight structure and proposes methodologies for generating highly articulated and differentiated systems. As material is a critical component, the research focuses on a system-based approach which places priority on the inclusion of material research and parameterization into a behavior-based computational process.
wos WOS:000335665500092
keywords Material behavior; material computation; system; gestalt; tension-active system
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_82
id acadia11_82
authors Ahlquist, Sean; Menges, Achim
year 2011
title Behavior-based Computational Design Methodologies: Integrative processes for force defined material structures
doi https://doi.org/10.52842/conf.acadia.2011.082
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 82-89
summary With the introduction of physics-based algorithms and modeling environments, design processes have been shifting from the representation of materiality to the simulation of approximate material descriptions. Such computational processes are based upon enacting physical and material behavior, such as gravity, drag, tension, bending, and inflation, within a generative modeling environment. What is often lacking from this strategy is an overall understanding of computational design; that information of increasing value and precision is generated through the development and iterative execution of specific principles and integrative mechanisms. The value of a physics-based modeling method as an information engine is often overlooked, though, as they are primarily utilized for developing representational diagrams or static geometry – inevitably translated to function outside of the physical bounds and parameters defined with the modeling process. The definition of computational design provides a link between process and a larger approach towards architecture – an integrative behavior-based process which develops dynamic specific architectural systems interrelated in their material, spatial, and environmental nature. This paper, focusing on material integration, describes the relation of a computational design approach and the technical framework for a behavior-based integrative process. The application is in the development of complex tension-active architectural systems. The material behavior of tensile meshes and surfaces is integrated and algorithmically calibrated to allow for complex geometries to be materialized as physical systems. Ultimately, this research proposes a computational structure by which material and other sorts of spatial or structural behaviors can be activated within a generative design environment.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia12_47
id acadia12_47
authors Aish, Robert ; Fisher, Al ; Joyce, Sam ; Marsh, Andrew
year 2012
title Progress Towards Multi-Criteria Design Optimisation Using Designscript With Smart Form, Robot Structural Analysis and Ecotect Building Performance Analysis"
doi https://doi.org/10.52842/conf.acadia.2012.047
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 47-56
summary Important progress towards the development of a system that enables multi-criteria design optimisation has recently been demonstrated during a research collaboration between Autodesk’s DesignScript development team, the University of Bath and the engineering consultancy Buro Happold. This involved integrating aspects of the Robot Structural Analysis application, aspects of the Ecotect building performance application and a specialist form finding solver called SMART Form (developed by Buro Happold) with DesignScript to create a single computation environment. This environment is intended for the generation and evaluation of building designs against both structural and building performance criteria, with the aim of expediently supporting computational optimisation and decision making processes that integrate across multiple design and engineering disciplines. A framework was developed to enable the integration of modeling environments with analysis and process control, based on the authors’ case studies and experience of applied performance driven design in practice. This more generalised approach (implemented in DesignScript) enables different designers and engineers to selectively configure geometry definition, form finding, analysis and simulation tools in an open-ended system without enforcing any predefined workflows or anticipating specific design strategies and allows for a full range of optimisation and decision making processes to be explored. This system has been demonstrated to practitioners during the Design Modeling Symposium, Berlin in 2011 and feedback from this has suggested further development.
keywords Design Optimisation , Scripting , Form Finding , Structural Analysis , Building Performance
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2011_264
id sigradi2011_264
authors Araneda, Claudio
year 2011
title Hacia un Estudio del Protofenómeno Urbano: Rudimentos Analíticos para una Aproximación Fenoménica al Estudio de la Percepción de Seres Humanos en el Espacio Urbano [Towards a Study of the Urban Protophenomenon: Analytical Rudiments for a Phenomenological Approximation to the Study of the Perception of Human Beings in Urban Space]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 534-537
summary This work outlines the theoretical and methodological framework for the development of analytical rudiments contributing to the registry, cartography and quantification of the urban phenomenon understood not as urban space perception but rather, as human beings perception within urban space. It argues that this approach to urban studies is part of a scarcely explored lineage within the field of urban analysis. One that, much in the same way as the widely used topological/ structural approach, reveals key quantifiable information, mainly, in terms of real or effective density and therefore, of high value for the design of micro and meso urban scales.
keywords Urban phenomenon; urban protophenomenon; phenomenology, urban analysis, space syntax
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2011_053
id ecaade2011_053
authors Barros, Mário; Duarte, José P.; Chaparro, Bruno
year 2011
title Digital Thonet: An automated system for the generation and analysis of custom-made chairs
doi https://doi.org/10.52842/conf.ecaade.2011.521
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.521-529
summary A system is presented to support the designer in creating custom versions of chairs within a predefined design language using Thonet chairs as a case study. The system consists of parametric models based on shape grammars linked to structural analysis to provide an integrated generative process for mass customization in the furniture industry.
wos WOS:000335665500060
keywords Thonet; furniture design; finite element method; parametric design; mass customization
series eCAADe
email
last changed 2022/05/01 23:21

_id ijac20109301
id ijac20109301
authors Biloria, Nimish
year 2011
title InfoMatters, a multi-agent systems approach for generating performative architectural formations
source International Journal of Architectural Computing vol. 9 - no. 3, 205-222
summary The research paper exemplifies upon a computationally intensive inter-disciplinary research driven design investigation into spatializing the relationship between digital information and physical matter. Focusing on the development of architectural scale urban inserts, the design-research work operates on the intersection of information technology, environmental design, architecture, and computer aided manufacturing domains.The research framework revolves around developing a seamless integration of the aforementioned disciplines in order to establish iterative simulation driven methodologies for generating bottom-up sustainable architectural formations. This is achieved by establishing parametrically driven relational linkages between differential data sets (environmental, social, topological, material etc), which formulate the context (both global and local) within which the proposed project has to be designed. A selforganizing multi-agent system based simulation methodology for generating resultant spatial formations, in time, based on the impacts of the parametric relationships between the aforementioned data sets is eventually embarked upon. This implies, understanding the site as a dynamic information field within which interdependent ecology of agents (representing typology of people, program, structure, speed, desired social interaction etc) with multi-level relational affinities amongst each other as well as the dynamic urban information field. The resultant self-organized multi-agent formations are iteratively mined for identifying logical three-dimensional structural patterns or subjected to programmatic and environmental need driven additional layer of structural simulation with pre-embedded material restraints. An optimized system of multi-performative components that not only populates but also serves as an integrated structural + skin system of the results obtained from the agent based simulations (based upon the degree of inclusion/exclusion of parameters such as the amount of light, sound, wind etc) is subsequently generated. These experimental projects attained the status of self-evolving ecologies of multi-dimensional agents with embodied behavioural profiles, thus providing engaged, highly interdependent design by simulation outputs. The outputs showcase a dynamic system's driven approach towards sustainable design by stressing upon the idea of cohesively binding information and material systems from the very beginning of the design process. Such approaches help in reducing post-optimization of built form and consequently allow for rational understanding of performance criteria and its impact on formal articulations throughout the design process.
series journal
last changed 2019/05/24 09:55

_id ecaade2011_136
id ecaade2011_136
authors Bohnenberger, Sascha; de Rycke, Klaas; Weilandt, Agnes
year 2011
title Lattice Spaces: Form optimisation throgh customization of non developable 3d wood surfaces
doi https://doi.org/10.52842/conf.ecaade.2011.751
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.751-758
summary This paper discusses a collaborative project by RDAI architects, Bollinger+Grohmann and the timber construction company Holzbau Amann. The project is located in a former swimming pool in Paris and it is part of the new interior of a flagship store of the French fashion label Hermes. In late 2009, Rena Duma Architects, asked Bollinger+Grohmann to collaborate as structural engineers on a challenging design proposal within a very short timeframe. Three wooden lattice structures, the so-called “bulle” and one monumental staircase with a similar design approach characterize the interior of the new flagship store. The lattice structures are dividing the basement into different retail spaces. They vary in height (8-9 m) and diameter (8-12 m) and have a free-form shaped wicker basket appearance. Wood was the chosen material for these structures to strengthen the idea of the wickerbaskets and to create an interior space with a sustainable and innovative material.
wos WOS:000335665500087
keywords Digital production; parametric design; mass customization; wood; digital crafting
series eCAADe
email
last changed 2022/05/01 23:21

_id acadia11_138
id acadia11_138
authors Buell, Samantha; Shaban, Ryan; Corte, Daniel; Beorkrem, Christopher
year 2011
title Zero-waste, Flat Pack Truss Work: An Investigation of Responsive Structuralism
doi https://doi.org/10.52842/conf.acadia.2011.138
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 138-143
summary The direct and rapid connections between scripting, modeling and prototyping allow for investigations of computation in fabrication. The manipulation of planar materials with two-dimensional CNC cuts can easily create complex and varied forms, volumes, and surfaces. However, the bulk of research on folding using CNC fabrication tools is focused upon surfaces, self-supporting walls and shell structures, which do not integrate well into more conventional building construction models.This paper attempts to explain the potential for using folding methodologies to develop structural members through a design-build process. Conventional building practice consists of the assembly of off-the-shelf parts. Many times, the plinth, skeleton, and skin are independently designed and fabricated, integrating multiple industries. Using this method of construction as an operative status quo, this investigation focused on a single structural component: the truss. A truss is defined as: “A triangulated arrangement of structural members that reduces nonaxial external forces to a set of axial forces in its members.” (Allen and Iano 2004)Using folding methodologies and sheet steel to create a truss, this design investigation employed a recyclable and prolific building material to redefine the fabrication of a conventional structural member. The potential for using digital design and two-dimensional CNC fabrication tools in the design of a foldable truss from sheet steel is viable in the creation of a flat-packed, minimal waste structural member that can adapt to a variety of aesthetic and structural conditions. Applying new methods to a component of the conventional ‘kit of parts’ allowed for a novel investigation that recombines zero waste goals, flat-packing potential, structural expression and computational processes.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia11_272
id acadia11_272
authors Dimcic, Milos; Knippers, Jan
year 2011
title Free-form Grid Shell Design Based on Genetic Algorithms
doi https://doi.org/10.52842/conf.acadia.2011.272
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 272-277
summary In the 21st century, as free-form design grows in popularity, grid shells are becoming a universal structural solution, enabling the conflation of structure and skin (façade) into one single element (Kolarevic 2003). This paper presents some of the results of a comprehensive research project focused on the automated design and optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It shows that by combining design and FEM software in an iterative, Genetic Algorithms-based optimization process, stress and deformation in grid shell structures can be significantly reduced, material can be saved and stability enhanced.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
doi https://doi.org/10.52842/conf.ecaade.2012.2.495
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
wos WOS:000330320600052
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2011_405
id sigradi2011_405
authors García Alvarado, Rodrigo; Lyon Gottlieb, Arturo
year 2011
title De la Optimización Estructural Evolutiva al Diseño Paramétrico basado en desempeño; experiencias en plataformas integradas para estrategias de diseño multidisciplinares [From Evolutionary Structural Optimization to performance driven Parametric Design; experiences on integrated platforms for multidisciplinary design strategies]
source SIGraDi 2011 [Proceedings of the 15th Iberoamerican Congress of Digital Graphics] Argentina - Santa Fe 16-18 November 2011, pp. 201-205
summary This paper presents a research developed by a multidisciplinary team looking into the use of Topological Optimization and its integration to collaborative design platforms in early stages of design processes. The interest of the experience is focused on how Evolutionary Structural Optimization (ESO) models can be further integrated into parametric design software for the definition of adaptable components in response to environmental and architectural criteria. This research explores platforms and processes for the collaboration between software development, structural engineers and architects in early stages of design as a possibility to relate the potential of computational processes with the definition of design criteria involving architectural, structural and environmental parameters.
keywords Evolutionary Structural Optimization; Topological Analysis; Parametric Design; Performance Driven Design
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2011_p145
id cf2011_p145
authors Georgiou, Odysseas
year 2011
title Interactive Structural Analysis
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 833-846.
summary This paper re-approaches structural engineering through an interactive perspective by introducing a series of tools that concatenate parametric design with structural analysis, thus achieving interoperability between form and its structural performance. Parametric Design is linked to Structural Analysis using computer programming to establish a common interactive framework that leads to performance based designs that respond to structural constrains and conditions in an interactive manner. A series of examples illustrate the synergy between form and structure by interactively modelling, analysing and visualizing its response.
keywords Structural engineering, parametric design, interoperability,free form,interactive,analysis
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_017
id caadria2011_017
authors Hanafin, Stuart; Sambit Datta and Bernard Rolfe
year 2011
title Tree facades: Generative modelling with an axial branch rewriting system
doi https://doi.org/10.52842/conf.caadria.2011.175
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 175-184
summary The methods and algorithms of generative modelling can be improved when representing organic structures by the study of computational models of natural processes and their application to architectural design. In this paper, we present a study of the generation of branching structures and their application to the development of façade support systems. We investigate two types of branching structures, a recursive bifurcation model and an axial tree based L-system for the generation of façades. The aim of the paper is to capture not only the form but also the underlying principles of biomimicry found in branching. This is then tested, by their application to develop experimental façade support systems. The developed algorithms implement parametric variations for façade generation based on natural tree-like branching. The benefits of such a model are: ease of structural optimization, variations of support and digital fabrication of façade components.
keywords Parametric Modelling; Biomimicry; Lindenmayer Systems; Branching Structures
series CAADRIA
email
last changed 2022/06/07 07:50

_id cf2011_p099
id cf2011_p099
authors Huang, Andy; Erhan Halil, Woodbury Robert, Nasirova Diliara, Kozlova Karine
year 2011
title Collaboration Workflow Simplified: Reduction of Device Overhead for Integrated Design Collaboration
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 591-602.
summary Design collaboration relies on cognitive tools such as analog media and digital peripheral devices, and shows the characteristics of distributed cognition. It is a social and complex activity involving multiple agents communicating and using external cognitive tools to encode, decode, and share information in the process of collaborative task completion. The systems supporting this activity should meet the ’principle of least collaboration effort’ [4] that proposes that agents in collaboration minimize their effort in presentation and acceptance of information. Yet, current collaboration systems are dispersed mixed media that is often overloaded with representations and functionality, thus preventing seam- less information sharing. Designers are required to spend extra effort collecting information using peripheral devices and in system management when sharing information. The goal of this study is to understand these overheads in infor- mation collection and sharing using peripheral devices, and to provide designers with a supportive platform to enhance collaboration using both analog and digital media. In this paper, we first review available peripheral devices such as smart pens, digital cameras, and voice recorders, as well as existing collaboration sup- porting software systems for their benefits and deficiencies in collaboration. We then present ’DiNa’, a collaboration platform that is envisioned to improve pro- ductivity and reduce redundant work by integrating peripheral devices into the collaboration workflow. We demonstrate a possible workflow using this system through several scenarios where designers collaborate in performing a series of design tasks. We hope to bring attention to the importance least collaborative effort in designing systems to support real-world collaboration.
keywords Collaboration, Peripheral Devices, Knowledge Collection, Human Computer Interaction, Computer Aided Design
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_071
id caadria2011_071
authors Huang, Weixin; Weiguo Xu and Tao Wang
year 2011
title Structural form generation using interactive genetic algorithm
doi https://doi.org/10.52842/conf.caadria.2011.751
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 751-760
summary Structural form design could be considered as a bi-objective problem which should satisfy both the efficiency criterion of structural engineering and the aesthetic criteria of architects. This research tries to introduce Interactive Genetic Algorithm (IGA) in the problem of structural form design. It combines the structural analysis performed by computer and aesthetic evaluation by architects into a bi-objective IGA process, in order to generate structural forms which are preferred by the architects and at the same time structurally optimal. In this research, the structure generated consists of two kinds of members, truss and beam. Generation and evolution of structure is based on a triangular element composed of several members. Through experiment of the IGA structural form design system, it is found the structure forms are optimized as the evolutionary process proceeds, and the aesthetic preference of architect is also transferred from generation to generation. It is also revealed that the two criteria have mutual restrictions, which resulted in compromised results.
keywords Bi-objective optimization; structural form; interactive genetic algorithm; subjective evaluation
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia11_52
id acadia11_52
authors Iwamoto, Lisa; Scott, Craig
year 2011
title Material Computation: Voussoir cloud
doi https://doi.org/10.52842/conf.acadia.2011.052
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 52-55
summary In contrast to such structurally pure models, the power of computation has opened possibilities for at once muddying and synthesizing geometry, structure and material performance. Where the earlier twentieth century experiments employed a more or less uniform tectonic based on symmetrical structural diagrams, contemporary analysis and design techniques can efficiently adapt a material system to address variable, localized, and non-symmetrical loading conditions. This has resulted in projects characterized by non-optimized structural forms that register the impacts of geometry on material behavior with a deviated tectonic system.
series ACADIA
type keynote paper
email
last changed 2022/06/07 07:50

_id caadria2011_014
id caadria2011_014
authors Khoo, Chin Koi and Flora Dilys Salim
year 2011
title Designing elastic transformable structures: Towards soft responsive architecture
doi https://doi.org/10.52842/conf.caadria.2011.143
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 143-152
summary This paper discusses the issues of designing and building environment involving spatial conditions that can be physically reconfigured to meet changing needs. To achieve this architectural vision, most current research focuses on the kinetic, mechanical systems and physical control mechanisms for actuation and structural transformation. Instead of the ‘hard’ mechanical joints and components, there is an unexplored ‘soft’ approach using lightweight elastic composite materials for designing responsive architectural skins and structures. This paper investigates the new possibilities for the manipulation of various architectural enclosures using ‘soft’ and elastic transformable structures, in response to environmental, communication and adapting to various contexts. This approach intends to minimise the mechanistic actuations and reduce weight for such operations. Therefore, this research introduces two modules (a tetrahedron and a cube) as responsive spatial models to test the potentials and limitations for the implementation of elastic materials with responsive capability towards reconfigurable architectural enclosure. Despite their individual differences, these experiments identify a trajectory for new possibilities for elastic architectural components that are more appropriate for ‘soft’ responsive architecture. We argue that this approach can provide an early hypothesis for design responsive architecture with a mix of passive and active design strategies.
keywords Elastic; transformable; soft; responsive
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2011_007
id caadria2011_007
authors Ko, Kaon and Salvator-John Liotta
year 2011
title Digital tea house: Japanese tea ceremony as a pretext for exploring parametric design and digital fabrication in architectural education
doi https://doi.org/10.52842/conf.caadria.2011.071
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 71-80
summary This paper reviews the Digital Tea House, a joint workshop in August of 2010 held at the University of Tokyo, Department of Architecture, together with Columbia University GSAPP. Three pavilions for hosting ceremony were designed and built in less than one month, in an attempt to bridge technology and culture not only through design but also fabrication. Issues addressed in the process included applications of computational design, interpretations of tradition and culture in spatial or activity oriented expressions, structural stability, to practical solutions for quick physical materialization. Three teams comprised of 6 to 8 students, each a blend of different nationalities, ultimately produced 3 full-scale tea houses with the same software, primary material, budget, and principal fabrication method.
keywords Digital fabrication; academic workshop; computational design; design-build; tea house
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_178154 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002