CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 562

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ascaad2023_091
id ascaad2023_091
authors Haddad, Naif
year 2023
title From Digital Heritage Documentation to 3D Virtual Reconstruction and Recreation for Heritage Promotion and Reinterpretation: The Case of the iHeritage Project
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 7-23.
summary In the last two decades, the digital age Information and Communication Technologies (ICT) development and concerns combined with rapid technology have permitted the dissemination of different digital applications (including digital documentation, virtual reality (VR), augmented reality (AR), mixed reality (MR), digital gaming, and holograms etc.) oriented toward past, present and future communication using digital three-dimensional audio-visual content. Today, we must acknowledge that 3D virtual 3D reconstruction and recreation has become an established way to build, understand, reinterpret, and promote Cultural Heritage (CH). The virtual 3D reconstruction world and multimedia industry are often considered potential marketing channels for World Heritage Sites (WHS) and heritage tourism. 3D digital/virtual reconstruction merges and embodies subjectivity in one process, playing an attractive role in heritage tourism destinations and creating image experiences, providing the first enjoyable interpretation and information for most audiences. Based on the EU-funded iHERITAGE project ICT Mediterranean platform for the UNESCO CH, this paper attempts to examine some insights into constructing the optimistic image of heritage promotion and tourism in the context of CH as it flows through both physical and virtual spaces to give a glimpse of the future of virtual reconstruction. It illustrates the development of the concepts and practice, challenges and opportunities, advantages and disadvantages, and the negative and the positive sides of the related issues of only 3D digital reconstructions, and some issues concerning the ethics based on the International Chartres and Conventions mainly in the field of scientific visualisation, such as the London Charter (2009) and Seville Principles (2011). Finally, as a practical dimension, it presents some representative examples of 3D digital/virtual reconstruction of characteristic monuments of the WHS of Nabataean Petra in Jordan for the first time.
series ASCAAD
email
last changed 2024/02/13 14:40

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p075
id cf2011_p075
authors Janssen, Patrick; Chen Kian Wee
year 2011
title Visual Dataflow Modelling: A Comparison of Three Systems
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 801-816.
summary Visual programming languages enable users to create computer programs by manipulating graphical elements rather than by entering text. The difference between textual languages and visual languages is that most textual languages use a procedural programming model, while most visual languages use a dataflow programming model. When visual programming is applied to design, it results in a new modelling approach that we refer to 'visual dataflow modelling' (VDM). Recently, VDM has becoming increasingly popular within the design community, as it can accelerate the iterative design process, thereby allowing larger numbers of design possibilities to be explored. Furthermore, it is now also becoming an important tool in performance-based design approaches, since it may potentially enable the closing of the loop between design development and design evaluation. A number of CAD systems now provide VDM interfaces, allowing designers to define form generating procedures without having to resort to scripting or programming. However, these environments have certain weaknesses that limit their usability. This paper will analyse these weaknesses by comparing and contrasting three VDM environments: McNeel Grasshopper, Bentley Generative Components, and Sidefx Houdini. The paper will focus on five key areas: * Conditional logic allow rules to be applied to geometric entities that control how they behave. Such rules will typically be defined as if-then-else conditions, where an action will be executed if a particular condition is true. A more advanced version of this is the while loop, where the action within the loop will be repeatedly executed while a certain condition remains true. * Local coordinate systems allow geometric entities to be manipulated relative to some convenient local point of reference. These systems may be either two-dimensional or three-dimensional, using either Cartesian, cylindrical, or spherical systems. Techniques for mapping geometric entities from one coordinate system to another also need to be considered. * Duplication includes three types: simple duplication, endogenous duplication, and exogenous duplication. Simple duplication consists of copying some geometric entity a certain number of times, producing identical copies of the original. Endogenous duplication consist of copying some geometric entity by applying a set of transformations that are defined as part of the duplication process. Lastly, exogenous duplication consists of copying some geometric entity by applying a set of transformations that are defined by some other external geometry. * Part-whole relationships allow geometric entities to be grouped in various ways, based on the fundamental set-theoretic concept that entities can be members of sets, and sets can be members of other sets. Ways of aggregating data into both hierarchical and non-hierarchical structures, and ways of filtering data based on these structures need to be considered. * Spatial queries include relationships between geometric entities such as touching, crossing, overlapping, or containing. More advanced spatial queries include various distance based queries and various sorting queries (e.g. sorting all entities based on position) and filtering queries (e.g. finding all entities with a certain distance from a point). For each of these five areas, a simple benchmarking test case has been developed. For example, for conditional logic, the test case consists of a simple room with a single window with a condition: the window should always be in the longest north-facing wall. If the room is rotated or its dimensions changed, then the window must re-evaluate itself and possibly change position to a different wall. For each benchmarking test-case, visual programs are implemented in each of the three VDM environments. The visual programs are then compared and contrasted, focusing on two areas. First, the type of constructs used in each of these environments are compared and contrasted. Second, the cognitive complexity of the visual programming task in each of these environments are compared and contrasted.
keywords visual, dataflow, programming, parametric, modelling
series CAAD Futures
email
last changed 2012/02/11 19:21

_id eaea2009_kardos_plachtinska
id eaea2009_kardos_plachtinska
authors Kardos, Peter; Petra Plachtinska
year 2011
title Spatial Experience in Real & Virtual Environment as an Urban Design Tool
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 59-64
summary The innovations of information technologies and the new possibilities of multimedia exploitation in the realm of architectural design and education are supporting the development of image communication methods on the basis of interactivity. The creative process of searching and decision-making in the urban design studio of our Faculty is supported by spatial modeling methods. The draft is sketched in modeling material on a working model. From the didactic point of view, relevant are mainly those phases, in which is possible, in the imaginative way, to support the searching and decision making process with the aim to test, compare and continuously evaluate the fulfillment of the hypothetic intentions of the solution responsibilities. The model becomes an interactive medium of cooperation between teacher and the working group of students. From the view of design crystallization, the dominant phases, in the creative process, are examining, verification, and simulation. The alternatives of material-compositional content and the spatial performance charts of modeled physical structure are verifying and the visual experience of the anticipated urban environment is simulated by the author, but also through the future client’s eyes. The alternation of the composition’s spatial configurations is generally appreciated by the static visual verification in the endoscopic horizon like the architectural spatial studies. The effective method of the progress generates a creative atmosphere for the generative thinking and design. The laboratory simulation of spatial experiences and their evaluation is performed following the perception psychology relations. The simulation of digestion of the new spatial reality intervenes the customer’s identification and guides to subjective approaches towards the quality and complexity of the formed environment. The simulation is performed in motion in order to be able to anticipate the dynamic continuity of subjective spatial imagination. The induced atmosphere will direct the evaluational attitudes of authors on comparison and selection of the successful alternatives. In our fee, we will present the demonstrations of selected static and dynamic notations of image sequences prepared in our laboratory. The presentations have been created in order to analyze, verify and offer imaginative support to creative findings in result of fulfilling the studio design tasks in the educational process. The main one is the design of urban spatial structures. The laboratory methodology is in the first place oriented on the analogue-digital procedures of "endoscope" model simulation. At the same time it also explores and looks for new unconventional forms of visual communication or archiving as imagination support to specialist and laymen participants in creative, valorization and approval processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming “design challenges on a much larger scale as we become an increasingly global and technological society” (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design – such as Second Life and There – are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id eaea2009_ohno_wada
id eaea2009_ohno_wada
authors Ohno, Ryuzo; Yohei Wada
year 2011
title Visibility of Guide Signs for Pedestrians in Motion: An Application of an Immersive Visual Simulation System
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 107-114
summary When we visit a complex railway station or a large shopping mall, we rely on guide signs to find our destination. These are not always helpful, however, since the sheer number of signs around us may distract us from picking up the necessary information. The presence of other pedestrians also adds to the difficulty by blocking our view. In crowded situations where we cannot disturb pedestrian flow, we must moreover be able to read signs while walking and paying attention to the people ahead. With the above in mind, the present study uses an immersive visual simulation system to examine the influence of observation conditions on sign detection and recognition by pedestrians in motion. Two experiments were performed for the present study. The first examined the readable range (readability threshold) of three types of sign lettering in motion. This served to determine conditions for the second experiment as well as to test the performance of the immersive visual simulation system. The system displays wide-angle images (180 degrees both vertically and horizontally) capable of filling viewers’ peripheral vision; viewers may also gain stereoscopic vision through the use of polarizing glasses. The second experiment examined the influence of various observation conditions on sign detection and recognition while in motion. The virtual experimental space, made to resemble a concourse in a large railway station, was 15 m wide and 3.5 m high. The subjects, nine university students, were asked to detect the target that was assigned one of the eight figures while moving through the virtual space at a walking speed (1.5m/s) and to tap a keyboard at hand when the target was detected. At the moment of the subject’s response, the distance between the observation point and the target in the virtual space was recorded. The factors tested were sign layout (density, aggregation, alignment) and presence of other pedestrians. The degree of influence of a factor was determined by analyzing the detection distance for a comparison stimulus versus for a standard stimulus as well as the ratio of targets detected. The experiments revealed that the readability of figures viewed in motion may differ from when they are viewed under static conditions. The following factors were found to be relevant to sign detection and recognition while in motion: 1) density of signs (amount of visual information), 2) smoothness of eye movement from one sign to another, and 3) allocation of visual attention. Although the results were obtained in virtual experimental settings, and the absolute numerical values therefore have limited meaning, the results nonetheless empirically clarify some of the mechanisms involved in the detection and recognition of guide signs by pedestrians.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id eaea2009_piga
id eaea2009_piga
authors Piga, Barbara E.A.
year 2011
title The Urban Simulation and Projects Evaluation Laboratory at the Politecnico di Milano: An Educational and Research Facility
source Projecting Spaces [Proceedings of the 9th European Architectural Endoscopy Association Conference / ISBN 978-3-942411-31-8 ], pp. 115-120
summary At the beginning of 2007 an Italian Urban Simulation Laboratory was founded at the Politecnico di Milano. The laboratory, coordinated by prof. Fausto Curti, has been developed thanks to the one year presence of the visiting professor Peter Bosselmann, director of the Environmental Simulation Laboratory at the University of California at Berkeley. The laboratory has an interdisciplinary approach and a threefold mission: experiment, using the laboratory setting to study urban projects at different scales; communicate, aiding public communication by making urban projects understandable to everyone; integrate and innovate, working on different kind of simulations techniques in an integrated way. In its initial experience the laboratory is primarily a didactic and research facility. Students can join the work and participate actively to the research. Until now about 40 students have worked with us, more than a half were foreign students from all over the world. The majority of the students did an internship of about 150 (three-year degree) or 300 (master degree) hours and some of them have continued working after this period developing a thesis. At the moment the case study, used as a pilot research, is about the Porta Nuova project at the Garibaldi- Repubblica area in Milan. The 300.000 mq of the total area and its well served central position make this place strategic for Milan. In this area the adopted urban transformation plan is creating a new business center that affects redevelopment projects, new infrastructures, and a park. The overall project will overhanging the surroundings city center with some of the highest buildings of its skyline. The importance of the site and the dimension of the project make this case significant to test the use of simulation for supporting evaluations about morphological aspects, comfort conditions, visual impacts, and other aspects that directly influence the quality of the new urban spaces. We are now applying different simulation methodologies in order to better understand the peculiar usefulness of each kind as a tool to support evaluation. As any kind has its own limits we work with different typologies at the same time. We are working with 1:500 scale physical model of a 1 km square of the area and different kind of static and dynamic simulations. We developed, with an external office, a micro-car to move a micro-camera in the maquette. We use this equipment to better explain the project implications to the students by producing subjective shot videos or showing a walk in real-time. To reproduce in a better way some relevant walks through the transformed site we have also produced some videos made of a superimposition of the real existing context and the virtual projects. To do this we used a rendered video of the project superimposed to the filmed promenade of the today condition, previously recorded using steadycam. A lot of static simulations has been employed to better understand the new city configuration from some representative points of view, as for example the roof of the Duomo cathedral. We are now developing some other kinds of analysis such as shadows impact; this is done by using a 1:1000 scale maquette in the Heliodon, but also with some digital tools. In the next future a work with the wind tunnel will help to understand some other comfort implications of the project at the micro-urban scale. The multilayer approach is the main aim of the laboratory and is an important tool to clarify the multidimensional project impacts to the students. In this way the laboratory can be a learning tool, it can stimulate the project process and support decision-making while improving the knowledge about the correct use of simulations for evaluating the cumulative implications of the proposed urban processes.
series other
more http://info.tuwien.ac.at/eaea
last changed 2011/03/04 08:45

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2011_000
id sigradi2011_000
authors Chiarella, Mauro; Tosello, Maria Elena (eds.)
year 2011
title Sigradi 2011: Augmented Culture
source Proceedings of the 15th Iberoamerican Congress of Digital Graphics Graphics / ISBN 13: 978-987-657-679-6] Argentina - Santa Fe 16-18 November 2011, 579 p.
summary “Augmented Culture” talks about a combination of interdependent social and technological meanings in a complex, multiple, interactive and interconnected context. It acknowledges that a new social and cultural paradigm is being developed as the old barriers of time, space and language are ruptured and transcended. In our knowledge-based civilization, we inhabit interconnected societies where new relational forms are configured. Additionally, cultural expressions have been qualitatively augmented starting from their integration with information and communication technologies, which have dramatically enhanced not only their creative and reflective processes, but also the realization and construction of cultural objects. In this sense, an “Augmented Culture” compels us to investigate the wide and complex spectrum of the variables that express the interdisciplinary, collective and participative constructions of our present age, so strongly related to visual culture, information culture and interface culture. Thus, we consider it necessary to concentrate, to expand, to spread and to share exploratory, descriptive or explanatory experiences and productions of such phenomena. The attempt is to define a multidimensional theoretical framework that while recognizing today’s state-of-the-art and tendencies, it provides us with a critical viewpoint.
series other
type normal paper
email
last changed 2011/12/30 18:05

_id acadia11_316
id acadia11_316
authors d’Estree Sterk, Tristan
year 2011
title Using Robotic Technologies to Integrate External Influences in Design
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 316-317
doi https://doi.org/10.52842/conf.acadia.2011.316
summary Designers have always assembled materials to form purposeful connections between ideas and spaces, uniting the height of human thought with the great ability of people to shape the world with their hands and tools. People have understood this opportunity and used it to inform the material investments that they make in buildings.When reflecting upon the past ten or so years of practice it is clear that some methodologies have matured. Professionals, academics and students have found new ways to connect thinking and doing. These connections have a different flavor and tend to feel more analytical to those once used. Previously internalized decisions are being made increasingly explicit by a generation of designers that has found a more meaningful overlap between the theories and procedures of design. The methods they use are visual, analytical, as well as intuitive, and encompassed within a whole gamut of tools such as Grasshopper, Ecotect, Digital Project and Generative Components. All of these tools provide opportunities for designers to inquisitively explore alternative formal, spatial and environmental relationships. The opportunities that are brought by increasing externalization are important. Design is at once turning away from its focus on the end result, be it a building or an interior, and toward a renewed interest in the design process itself. Brought about by encapsulating design principles into self-made tools, this shift has enabled families of formal outcomes rather than singular instances of ‘pure’ architecture. These multiple, equally valid, formal outcomes disrupt more traditional measures of formal legitimacy and help move architects toward more relational understandings of space, time and environment.
series ACADIA
type moderator overview
email
last changed 2022/06/07 07:55

_id ecaade2011_077
id ecaade2011_077
authors Ettlinger, Or
year 2011
title The Perceptual, the Virtual, and the Real: On the experience of place in the digital age
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.925-932
doi https://doi.org/10.52842/conf.ecaade.2011.925
wos WOS:000335665500106
summary Since the dawn of philosophical thought man has questioned the validity of his experience of the world around him: Is the world just as we perceive it to be, or does its true essence lie beyond our reach? In our own time, technological, social, and economic developments have made such philosophical concerns more relevant to our everyday lives than ever before. However, the available terminology for discussing such matters is often too limited to fully capture their nature. This paper proposes a consistent terminology for the discussion of such matters and suggests a model of the different aspects from which they are comprised. This terminology will be applied to, as well as presented through, issues that are pertinent to architectural theory, to the experience of places, and to the intangible sense of place which digital phenomena can sometimes provide.
keywords Architectural theory; media theory; perceptual; virtual; real
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p019
id cf2011_p019
authors Haeusler, Matthias Hank; Beilharz Kirsty
year 2011
title Architecture = Computer‚ from Computational to Computing Environments
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 217-232.
summary Drawing on architecture, urban digital media, engineering, IT and interaction design, the research presented in this paper outlines a possible shift from architecture designed through computation (any type of process, algorithm or measurement done in a computational matter) towards architecture capable of computing (developing, using and improving computer technology, computer hardware and software as a space-defining element). The research is driven by recent developments in four fields, as follows: (a) Architecture in its recent development has shifted from a planar box, as was the ideal in the modernist movement, towards complex and non-standard forms. (b) The design concepts of non-standard surfaces have been adopted into media facades and media architecture by liberating the pixel from its planar position on a screen [1]. (c) Advancements in pervasive computing applications are now able both to receive information from the environment in which they are used and to detect other devices that enter this environment [2]. (d) Developments in advanced autonomous systems such as Human Computer Interaction (HCI) or Human Robot Interaction (HRI), have produced intelligent systems capable of observing human cues and using these cues as the basis for intelligent decision-making [3]. Media fa_ßade developments work in the direction of the above-mentioned four fields, but often come with limitations in architectural integration; they need additional components to interact with their environment and their interactions are both often limited to visual interactions and require the user to act first. The researched system, Polymedia Pixel [4] discussed in this paper, can overcome these limitations and fulfil the need for a space-defining material capable of computing, thus enabling a shift from architecture designed by computation towards architecture capable of active computing. The Polymedia Pixel architecture merges digital technology with ubiquitous computing. This allows the built environment and its relation with digital technology to develop from (a) architecture being represented by computer to (b) computation being used to develop architecture and then further to where (c) architecture and the space-defining objects have computing attributes. Hence the study presented aims to consider and answer this key question: ‚ÄòWhen building components with computing capacity can define space and function as a computer at the same time, what are the constraints for the building components and what are the possible advantages for the built environment?‚Äô The conceptual framework, design and methods used in this research combine three fields: (a) hardware (architecture and design, electronic engineering) (b) software (content design and IT) and (c) interaction design (HCI and HRI). Architecture and urban design determinates the field of application. Media architecture and computer science provide the technological foundation, while the field of interaction design defines the methodology to link space and computing [5]. The conceptual starting point is to rethink the application of computers in architecture and, if architecture is capable of computing, what kind of methodology and structure would find an answer to the above core research question, and what are the implications of the question itself? The case study discusses opportunities for applying the Polymedia Pixel as an architectural component by testing it on: (a) constraint testing ‚Äì applying computational design methodologies to design space (b) singular testing - discussing the advantages for an individual building, and (c) plural testing ‚Äì investigating the potential for an urban context. The research aims to contribute to the field of knowledge through presenting first steps of a System < - > System mode where buildings can possibly watch and monitor each other, additional to the four primary interactive modes of operation. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords media architecture, computational environments, ubiquitous computing, interaction design, computer science
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2013_080
id caadria2013_080
authors Koh, Immanuel
year 2013
title Computer Vision and Augmented Reality Technologies in Experimental Architectural Design Education at the AA
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2013.427
wos WOS:000351496100042
summary This paper aims to investigate the potential of both open source software and new media (esp. computer vision and augmented reality) as tools for architectural design and education. The examples illustrated in the paper would be drawn mainly from students’ projects done as part of their AA Media Studies Course submission at the AA School of Architecture (AA) during the academic years from 2011/2012 to 2012/2013. The paper outlines the main approaches, which students have chosen to implement, both directly and indirectly, these new media and tools into their studio work at the AA. Section 1 briefly introduces a range of currently available open source computational design toolkits that are deemed useful for quick implementation of computer vision and augmented reality technologies. The related programming languages, softwares and hardwares would also be introduced and described accordingly. Sections 2 and 3 are accompanied with a visual catalogue of students’ projects to better illustrate the diversity in the understanding and implementation of computer vision and augmented reality technologies in architectural design. Section 4 serves to conclude the paper by first discussing briefly the feedback from students at the end of the course before clarifying the context of the research and thus its relation to recent work done by others using similar technologies.  
keywords Computer vision, Augmented reality, Generative design, Interaction design 
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac20109303
id ijac20109303
authors Meyboom, AnnaLisa
year 2011
title Heavy Design
source International Journal of Architectural Computing vol. 9 - no. 3, 251-258
summary Digital tools in architecture have a powerful capability that we have only begun to explore; the questions to ask of them are perhaps not what they can do but what should we use them for? To date, much of the work done in the area of computational design has been used as elaborate patterning - some have called it ‘ornament’. The significance of this ornament is not only pleasure but in its use of digital patterns to represent our current complex and digital age.This representation in itself is not problematic; however, what is problematic is the lack of other meaningful uses of the digital form-generating tools and their distance from a culture of making. The main failing of our use of digital design (algorithmic or not) in architecture to this point is its inability to translate smoothly from the digital world to the physical world. The main reasons for this difficulty in translation are gravity and inherent material properties. Working with gravity and its physical implications is generally considered the role of the structural engineer; as such, engineers have generally created digital tools in this area.The engineer's methodology analyses a structure based on complex structural analysis programming but in order to do this, a detailed description of the structure must already exist. This is not useful in preliminary stages of design. However, the generation of architecture within an environment, which already includes structural principles, may bring us one step closer to this transition of virtual to physical by including gravity in architectural generation while not diminishing the creative form-generating process. An approach has been proposed which responds with a concept of ‘heavy design’. This type of approach incorporates logics from other disciplines, primarily structural engineering, to inform design. The design process incorporates the structural behavior of a system into the architectural model. Engineering offers a mathematical interpretation of the physical world and this is inherently suited to algorithmic design because it is already in equation form. It can thus be programmed into the architectural form generational software. The variables used in the equations become the variables within the architectural design and this inherently brings the natural physical laws to the architecture through a numerical, algorithmic method. The design produced is not a singular answer but rather a responsive vocabulary of a structural system, which is then employed in design in differing conditions. The architecture produced is both function and ornament, having cultural interpretation but carrying out many engineering tasks: a true parametric architecture.
series journal
last changed 2019/05/24 09:55

_id cdrf2023_235
id cdrf2023_235
authors Mohsen Kafaei, Jane Burry, Mehrnoush Latifi, Joseph Ciorciari
year 2023
title Designing a Systematic Experiment to Investigate the Effect of Ambient Smell on Human Emotions in the Indoor Space; Introducing a Mixed-Method Approach
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_20
summary Studies have indicated that built environments affect all aspects of human life such as emotion, perception, behavior, health, and well-being (Cooper et al. 2011). Built environments are formed from the combination and juxtaposition of visible and invisible environmental variables. In recent years, common techniques such as virtual reality, augmented reality, digital twins, and artificial intelligence have enabled researchers in the field of architecture and urban design to simulate environmental conditions to investigate the impacts of environmental variables on humans. However, the studies conducted in this field of human comfort are mostly focused on the impact of environmental variables such as form, temperature, humidity, and sound, and in fewer studies, up-to-date methods and technologies have been used to simulate and investigate the impact of smell on humans. Most of the studies that have investigated the effect of ambient smell on humans, carried out in the discipline of architecture and urban design, have used traditional tools and methods (questionnaire, interview, observation) rather than advanced technology and tools drawing on neuroscientific knowledge and technique to measure the effectiveness of the ambient smell on human. They have used unmasked scents or real-world environments rather than being able to simulate environmental conditions. This article highlights the significance and necessity of employing simulation methods to investigate the impact of environmental smells on humans. Additionally, it presents the methodology of an experiment for studying the effect of indoor environment smells (with a case study of an office environment in the initial phases) on human emotions, utilizing a mixed-method approach. Analysis of some parts of the data from this experiment showed that exposure to the fragrance of the jasmine flower pleasant (flower) and the odor of the rotten orange peel (unpleasant) can cause changes in the electroencephalography (EEG) power across different bands among participants.
series cdrf
email
last changed 2024/05/29 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_761994 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002